Compute Rotation and Scale from Transform Object
-
@dburdick said:
Is there a simple Sketchup Ruby method which returns the x,y and z rotation in degrees ...
What's the application for this? (Scaling modifies the xform's [0,0], [1,1], [2,2] entries. Rotations modify all entries from [0,0] through [2,2]. It's not immediately obvious that you can find original operations in any non-trivial case.)
-
@martinrinehart said:
@dburdick said:
Is there a simple Sketchup Ruby method which returns the x,y and z rotation in degrees ...
What's the application for this? (Scaling modifies the xform's [0,0], [1,1], [2,2] entries. Rotations modify all entries from [0,0] through [2,2]. It's not immediately obvious that you can find original operations in any non-trivial case.)
Hi Martin,
Thanks for jumping in on this. I read your wonderful web-page description of the 4 x 4 matrix - truly excellent - and serves as the inspiration behind what I'm trying to do.
Basically, I need to get the exact rotation and scaling values of any component in world space in order to export an instance of that component. I already have figured out how to create the transformation by multiplying the stacked transformations of the component hierarchy, but I need to express the output rotational transformation in degrees - eg rotX, rotY, rotZ - and it needs to work even if the user decides to scale the component non-uniformly (e.g. skewing, shearing). In Sketchup, a user could for example scale a door component in only the Y direction. The current transform extension lib from TIG does not handle this correctly as the lib assumes all scaling is done uniformly to the component. So I need to understand how to adjust TIG's ruby code to accomodate this. Here's his code for example on returing the rotX value from a transform object:
def rotX #(Math.atan2(self.to_a[9],self.to_a[10])) Math.acos(self.to_a[5]).radians end
This works fine when the component is uniformly scaled, but fails when for example the x dimension is scaled to a value different than Y and Z. This is because the array value[5] contains a number greater than 1.0 when non-uniform scaling is introduced. So it will return an error and bomb. I;m not sure what the commented out code is above the equation.
-
I think the bits of code that're commented out [starts with a #] are perhaps the right code ?
Swap the two around - this was a work-in-progress that stalled...
Trydef rotX Math.atan2(self.to_a[9],self.to_a[10]) ###Math.acos(self.to_a[5]).radians end
??????
Let me know how it works... -
@tig said:
I think the bits of code that're commented out [starts with a #] are perhaps the right code ?
Swap the two around - this was a work-in-progress that stalled...
Try> def rotX > Math.atan2(self.to_a[9],self.to_a[10]) > ###Math.acos(self.to_a[5]).radians > end
??????
Let me know how it works...
Hi TIG,
Yes, when switching to the commented code versus the original lines it works better (doesn't bomb) - but it give incorrect results when two or more rotations are involved - e.g. roation around the X followed by rotation around Z. I'm going to try to see if I can return better results by working with 2 vectors intead of the whole matrix.
-
I think I found a more foolproof way of doing this by using transform object axis vectors. It turns out, that the 4 x 4 matrix needs to be normalized first (e.g. sans any non-uniform scaling) before computing the rotation angles. So the way to do this is to use the already normalized axis vectors (x-axis, yaxis, etc.). So here's the revised code which returns the rotation angles in degrees:
def rotX Math.atan2(self.yaxis.z,self.yaxis.y).radians end def rotY Math.atan2(self.xaxis.z,self.xaxis.x).radians end def rotZ Math.atan2(self.xaxis.y,self.xaxis.x).radians end
Update: Sorry I jumped the gun here a bit - this isn't correct. The scaling issues now work but the multi rotation problem is still here
-
Okay, I got it working to return nice clean Euler angles from a transform object. Here's the code (note - it returns right-handed angles in degrees):
def euler m = self.xaxis.to_a + self.yaxis.to_a + self.zaxis.to_a if m[6] != 1 and m[6]!= 1 ry = -Math.asin(m[6]) rx = Math.atan2(m[7]/Math.cos(ry),m[8]/Math.cos(ry)) rz = Math.atan2(m[3]/Math.cos(ry),m[0]/Math.cos(ry)) else rz = 0 phi = Math.atan2(m[1],m[2]) if m[6] == -1 ry = Math;;PI/2 rx = rz + phi else ry = -Math;;PI/2 rx = -rz + phi end end return -rx.radians, -ry.radians, -rz.radians end
-
Thanks for the input...
Here's my revised code using you ideas - it's still in radians and I have tried not to clash with your method naming etc - it now finds x/y/z rotations and [x,y,z] rotation as an array and has extra methods to set rotations from a 3 item array, referring either to the model axes or object's axes...### transformation.extensions.rb (c) TIG 2009 ### From original ideas by TBD and others ? ### TIG 20091010 ### The euler rotation ideas from Dave Burdick 20100324 ### It extends the methods for Geom;;Transformation... ### The built-in method "object.transformation.origin" return a point3d ### that is the object's origin/insertion; the new method ### object.transformation.getX etc returns the X location of the ### object [or Y or Z]. ### The setX(x) resets the X value of the object [or Y or Z]; it ### returns a new transformation that can then be used to reset the ### original transformation; thus; ### object.transformation=object.transformation.setX(another_object.transformation.getX) ### - here it makes the object's X = another_object's X ; ### it also could be given a float, e.g. 12.345 or a 'variable'... ### The object.transformation.scaleX etc returns the scale on that axis. ### The object.transformation.rotX etc returns the rotation on that axis ### in radians; use ... .rotX.radians to get it in degrees... ### It uses different names to TBD's, e.g. 'rotZ' instead of 'zrot' etc. ### Note the capitalization... this is because some 'compiled scripts' ### use 'rotz' already etc - [and they return the rotation in degrees!] ### object.transformation.rotXYZ ### returns a 3 item array giving the rotations in x/y/z ### object.transformation.rot_a ### returns an 11 item array of the transformation's rotation/scaling ### - it can be used to extract some data more easily or as below... ### object.transformation=object.transformation.rotation_from_rot_a(another_object.transformation.rot_a) ### this applies another_object's 'rot_a' to change the object. ### object.transformation=object.transformation.rotation_from(another_object.transformation) ### this applies another_object's rotation/scaling to the object. ### it returns a new transformation that can then be used to reset the original... ### object.transformation=object.transformation.origin_from(another_object.transformation) ### this applies another_object's origin/location to the object. ### it returns a new transformation that can then be used to reset the original... ### object.transformation=object.transformation.rotation_from_xyz([xrot,yrot,zrot]) ### this applies a 3 item array of x/y/z rotations about the model's x/y/z-axes, ### this could also be the array returned by rotXYZ. ### it returns a new transformation that can then be used to reset the original... ### object.transformation=object.transformation.rotation_from_xyz_locally([xrot,yrot,zrot]) ### this applies a 3 item array of x/y/z rotations about the objects's x/y/z-axes, ### this could also be the array returned by rotXYZ. ### it returns a new transformation that can then be used to reset the original... ### class Geom;;Transformation def euler_angle(xyz=[]) m = self.xaxis.to_a + self.yaxis.to_a + self.zaxis.to_a if m[6] != 1 and m[6]!= 1 ry = -Math.asin(m[6]) rx = Math.atan2(m[7]/Math.cos(ry),m[8]/Math.cos(ry)) rz = Math.atan2(m[3]/Math.cos(ry),m[0]/Math.cos(ry)) else rz = 0 phi = Math.atan2(m[1],m[2]) if m[6] == -1 ry = Math;;PI/2 rx = rz + phi else ry = -Math;;PI/2 rx = -rz + phi end end return -rx if xyz==0 return -ry if xyz==1 return -rz if xyz==2 return [-rx,-ry,-rz] if xyz==[] end def getX self.to_a[12] end def getY self.to_a[13] end def getZ self.to_a[14] end def setX(x) if not x.class==Float and not x.class==Integer puts "Transformation;;setX( ) expects a Float or Integer." return nil end#if x=x.to_f t=self.to_a t[12]=x return self.set!(t) end def setY(y) if not y.class==Float and not y.class==Integer puts "Transformation;;setY( ) expects a Float or Integer." return nil end#if y=y.to_f t=self.to_a t[13]=y return self.set!(t) end def setZ(z) if not z.class==Float and not z.class==Integer puts "Transformation;;setZ( ) expects a Float or Integer." return nil end#if z=z.to_f t=self.to_a t[14]=z return self.set!(t) end def scaleX Math.sqrt(self.to_a[0]**2+self.to_a[1]**2+self.to_a[2]**2) end def scaleY Math.sqrt(self.to_a[4]**2+self.to_a[5]**2+self.to_a[6]**2) end def scaleZ Math.sqrt(self.to_a[8]**2+self.to_a[9]**2+self.to_a[10]**2) end def rotX #(Math.atan2(self.to_a[9],self.to_a[10])) #Math.acos(self.to_a[5]) euler_angle(0) end def rotY #(Math.arcsin(self.to_a[8])) #Math.acos(self.to_a[0]) euler_angle(1) end def rotZ #(-Math.atan2(self.to_a[4],self.to_a[0])) #Math.asin(self.to_a[4]) euler_angle(2) end def rotXYZ euler_angle end def rot_a ### rotation matrix 4x3 3 and 7 are nil t=self.to_a r=[] [0,1,2,3,4,5,6,7,8,9,10].each{|i|r[i]=t[i]} r[3]=nil r[7]=nil return r end def rotation_from_xyz(xyz) if not xyz.class==Array and not xyz[2] and not xyz[0].class==Float and not xyz[1].class==Float and not xyz[2].class==Float puts "Transformation;;rotation_from_xyz( ) expects a 3 Item Array of Angles [as Floats]." return nil end#if tx=Geom;;Transformation.rotation(self.origin,X_AXIS,xyz[0]) ty=Geom;;Transformation.rotation(self.origin,Y_AXIS,xyz[1]) tz=Geom;;Transformation.rotation(self.origin,Z_AXIS,xyz[2]) t=(tx*ty*tz) return self.set!(t) end def rotation_from_xyz_locally(xyz) if not xyz.class==Array and not xyz[2] and not xyz[0].class==Float and not xyz[1].class==Float and not xyz[2].class==Float puts "Transformation;;rotation_from_xyz_locally( ) expects a 3 Item Array of Angles [as Floats]." return nil end#if tx=Geom;;Transformation.rotation(self.origin,self.xaxis,xyz[0]) ty=Geom;;Transformation.rotation(self.origin,self.yaxis,xyz[1]) tz=Geom;;Transformation.rotation(self.origin,self.zaxis,xyz[2]) t=(tx*ty*tz) return self.set!(t) end def rotation_from_rot_a(rot_a) if not rot_a.class==Array and not rot_a[10] puts "Transformation;;rotation_from_rot_a( ) expects an 11 Item Array." return nil end#if t=self.to_a [0,1,2,4,5,6,8,9,10].each{|i|t[i]=rot_a[i].to_f} return self.set!(t) end def rotation_from(trans) if not trans.class==Geom;;Transformation puts "Transformation;;rotation_from( ) expects a Sketchup;;Transformation." return nil end#if t=self.to_a tt=trans.to_a [0,1,2,4,5,6,8,9,10].each{|i|t[i]=tt[i].to_f} return self.set!(t) end def origin_from(trans) if not trans.class==Geom;;Transformation puts "Transformation;;origin_from( ) expects a Sketchup;;Transformation." return nil end#if t=self.to_a tt=trans.to_a [12,13,14].each{|i|t[i]=tt[i].to_f} return self.set!(t) end end#class ###
EDIT: typo in euler code fixed TIG 20110209
-
@dburdick said:
I read your wonderful web-page description of the 4 x 4 matrix - ...
Very kind words, indeed. Many thanks.
For those not versed in the Transformation Matrix, my tutorial's Appendix T, introduces it, Appendix MM explains matrix multiplication and Chapter 16 explains how you can live without it (and includes a Matrix class, just in case).
-
@tig said:
Thanks for the input...
Here's my revised code using you ideas - it's still in radians and I have tried not to clash with your method naming etc - it now finds x/y/z rotations and [x,y,z] rotation as an array and has extra methods to set rotations from a 3 item array, referring either to the model axes or object's axes...### transformation.extensions.rb (c) TIG 2009 > ### From original ideas by TBD and others ? ### TIG 20091010 > ### The euler rotation ideas from Dave Burdick 20100324 > ### It extends the methods for Geom;;Transformation... > ### The built-in method "object.transformation.origin" return a point3d > ### that is the object's origin/insertion; the new method > ### object.transformation.getX etc returns the X location of the > ### object [or Y or Z]. > ### The setX(x) resets the X value of the object [or Y or Z]; it > ### returns a new transformation that can then be used to reset the > ### original transformation; thus; > ### object.transformation=object.transformation.setX(another_object.transformation.getX) > ### - here it makes the object's X = another_object's X ; > ### it also could be given a float, e.g. 12.345 or a 'variable'... > ### The object.transformation.scaleX etc returns the scale on that axis. > ### The object.transformation.rotX etc returns the rotation on that axis > ### in radians; use ... .rotX.radians to get it in degrees... > ### It uses different names to TBD's, e.g. 'rotZ' instead of 'zrot' etc. > ### Note the capitalization... this is because some 'compiled scripts' > ### use 'rotz' already etc - [and they return the rotation in degrees!] > ### object.transformation.rotXYZ > ### returns a 3 item array giving the rotations in x/y/z > ### object.transformation.rot_a > ### returns an 11 item array of the transformation's rotation/scaling > ### - it can be used to extract some data more easily or as below... > ### object.transformation=object.transformation.rotation_from_rot_a(another_object.transformation.rot_a) > ### this applies another_object's 'rot_a' to change the object. > ### object.transformation=object.transformation.rotation_from(another_object.transformation) > ### this applies another_object's rotation/scaling to the object. > ### it returns a new transformation that can then be used to reset the original... > ### object.transformation=object.transformation.origin_from(another_object.transformation) > ### this applies another_object's origin/location to the object. > ### it returns a new transformation that can then be used to reset the original... > ### object.transformation=object.transformation.rotation_from_xyz([xrot,yrot,zrot]) > ### this applies a 3 item array of x/y/z rotations about the model's x/y/z-axes, > ### this could also be the array returned by rotXYZ. > ### it returns a new transformation that can then be used to reset the original... > ### object.transformation=object.transformation.rotation_from_xyz_locally([xrot,yrot,zrot]) > ### this applies a 3 item array of x/y/z rotations about the objects's x/y/z-axes, > ### this could also be the array returned by rotXYZ. > ### it returns a new transformation that can then be used to reset the original... > ### > class Geom;;Transformation > def euler_angle(xyx=[]) > m = self.xaxis.to_a + self.yaxis.to_a + self.zaxis.to_a > if m[6] != 1 and m[6]!= 1 > ry = -Math.asin(m[6]) > rx = Math.atan2(m[7]/Math.cos(ry),m[8]/Math.cos(ry)) > rz = Math.atan2(m[3]/Math.cos(ry),m[0]/Math.cos(ry)) > else > rz = 0 > phi = Math.atan2(m[1],m[2]) > if m[6] == -1 > ry = Math;;PI/2 > rx = rz + phi > else > ry = -Math;;PI/2 > rx = -rz + phi > end > end > return -rx if xyz==0 > return -ry if xyz==1 > return -rz if xyz==2 > return [-rx,-ry,-rz] if xyz==[] > end > def getX > self.to_a[12] > end > def getY > self.to_a[13] > end > def getZ > self.to_a[14] > end > def setX(x) > if not x.class==Float and not x.class==Integer > puts "Transformation;;setX( ) expects a Float or Integer." > return nil > end#if > x=x.to_f > t=self.to_a > t[12]=x > return self.set!(t) > end > def setY(y) > if not y.class==Float and not y.class==Integer > puts "Transformation;;setY( ) expects a Float or Integer." > return nil > end#if > y=y.to_f > t=self.to_a > t[13]=y > return self.set!(t) > end > def setZ(z) > if not z.class==Float and not z.class==Integer > puts "Transformation;;setZ( ) expects a Float or Integer." > return nil > end#if > z=z.to_f > t=self.to_a > t[14]=z > return self.set!(t) > end > def scaleX > Math.sqrt(self.to_a[0]**2+self.to_a[1]**2+self.to_a[2]**2) > end > def scaleY > Math.sqrt(self.to_a[4]**2+self.to_a[5]**2+self.to_a[6]**2) > end > def scaleZ > Math.sqrt(self.to_a[8]**2+self.to_a[9]**2+self.to_a[10]**2) > end > def rotX > #(Math.atan2(self.to_a[9],self.to_a[10])) > #Math.acos(self.to_a[5]) > euler_angle(0) > end > def rotY > #(Math.arcsin(self.to_a[8])) > #Math.acos(self.to_a[0]) > euler_angle(1) > end > def rotZ > #(-Math.atan2(self.to_a[4],self.to_a[0])) > #Math.asin(self.to_a[4]) > euler_angle(2) > end > def rotXYZ > euler_angle > end > def rot_a ### rotation matrix 4x3 3 and 7 are nil > t=self.to_a > r=[] > [0,1,2,3,4,5,6,7,8,9,10].each{|i|r[i]=t[i]} > r[3]=nil > r[7]=nil > return r > end > def rotation_from_xyz(xyz) > if not xyz.class==Array and not xyz[2] and not xyz[0].class==Float and not xyz[1].class==Float and not xyz[2].class==Float > puts "Transformation;;rotation_from_xyz( ) expects a 3 Item Array of Angles [as Floats]." > return nil > end#if > tx=Geom;;Transformation.rotation(self.origin,X_AXIS,xyz[0]) > ty=Geom;;Transformation.rotation(self.origin,Y_AXIS,xyz[1]) > tz=Geom;;Transformation.rotation(self.origin,Z_AXIS,xyz[2]) > t=(tx*ty*tz) > return self.set!(t) > end > def rotation_from_xyz_locally(xyz) > if not xyz.class==Array and not xyz[2] and not xyz[0].class==Float and not xyz[1].class==Float and not xyz[2].class==Float > puts "Transformation;;rotation_from_xyz_locally( ) expects a 3 Item Array of Angles [as Floats]." > return nil > end#if > tx=Geom;;Transformation.rotation(self.origin,self.xaxis,xyz[0]) > ty=Geom;;Transformation.rotation(self.origin,self.yaxis,xyz[1]) > tz=Geom;;Transformation.rotation(self.origin,self.zaxis,xyz[2]) > t=(tx*ty*tz) > return self.set!(t) > end > def rotation_from_rot_a(rot_a) > if not rot_a.class==Array and not rot_a[10] > puts "Transformation;;rotation_from_rot_a( ) expects an 11 Item Array." > return nil > end#if > t=self.to_a > [0,1,2,4,5,6,8,9,10].each{|i|t[i]=rot_a[i].to_f} > return self.set!(t) > end > def rotation_from(trans) > if not trans.class==Geom;;Transformation > puts "Transformation;;rotation_from( ) expects a Sketchup;;Transformation." > return nil > end#if > t=self.to_a > tt=trans.to_a > [0,1,2,4,5,6,8,9,10].each{|i|t[i]=tt[i].to_f} > return self.set!(t) > end > def origin_from(trans) > if not trans.class==Geom;;Transformation > puts "Transformation;;origin_from( ) expects a Sketchup;;Transformation." > return nil > end#if > t=self.to_a > tt=trans.to_a > [12,13,14].each{|i|t[i]=tt[i].to_f} > return self.set!(t) > end > end#class > ### >
Hey Tig, thanks for the great code, i might be doing something wrong here but this:
Selection = Sketchup.active_model.selection[0] Rotation = Selection.transformation.rotXYZ
Gives an error,
Error; #<NameError; undefined local variable or method `xyz' for #<Geom;;Transformation;0xa747534>> D;/PROGRA~1/Google/GOOGLE~1/Plugins/test.rb;128;in `euler_angle' D;/PROGRA~1/Google/GOOGLE~1/Plugins/test.rb;197;in `rotXYZ' D;/PROGRA~1/Google/GOOGLE~1/Plugins/test.rb;64
Any suggestions what could be going wrong?
-
@djarlo said:
@tig said:
Thanks for the input...
Here's my revised code using you ideas - it's still in radians and I have tried not to clash with your method naming etc - it now finds x/y/z rotations and [x,y,z] rotation as an array and has extra methods to set rotations from a 3 item array, referring either to the model axes or object's axes...### transformation.extensions.rb (c) TIG 2009 > > ### From original ideas by TBD and others ? ### TIG 20091010 > > ### The euler rotation ideas from Dave Burdick 20100324 > > ### It extends the methods for Geom;;Transformation... > > ### The built-in method "object.transformation.origin" return a point3d > > ### that is the object's origin/insertion; the new method > > ### object.transformation.getX etc returns the X location of the > > ### object [or Y or Z]. > > ### The setX(x) resets the X value of the object [or Y or Z]; it > > ### returns a new transformation that can then be used to reset the > > ### original transformation; thus; > > ### object.transformation=object.transformation.setX(another_object.transformation.getX) > > ### - here it makes the object's X = another_object's X ; > > ### it also could be given a float, e.g. 12.345 or a 'variable'... > > ### The object.transformation.scaleX etc returns the scale on that axis. > > ### The object.transformation.rotX etc returns the rotation on that axis > > ### in radians; use ... .rotX.radians to get it in degrees... > > ### It uses different names to TBD's, e.g. 'rotZ' instead of 'zrot' etc. > > ### Note the capitalization... this is because some 'compiled scripts' > > ### use 'rotz' already etc - [and they return the rotation in degrees!] > > ### object.transformation.rotXYZ > > ### returns a 3 item array giving the rotations in x/y/z > > ### object.transformation.rot_a > > ### returns an 11 item array of the transformation's rotation/scaling > > ### - it can be used to extract some data more easily or as below... > > ### object.transformation=object.transformation.rotation_from_rot_a(another_object.transformation.rot_a) > > ### this applies another_object's 'rot_a' to change the object. > > ### object.transformation=object.transformation.rotation_from(another_object.transformation) > > ### this applies another_object's rotation/scaling to the object. > > ### it returns a new transformation that can then be used to reset the original... > > ### object.transformation=object.transformation.origin_from(another_object.transformation) > > ### this applies another_object's origin/location to the object. > > ### it returns a new transformation that can then be used to reset the original... > > ### object.transformation=object.transformation.rotation_from_xyz([xrot,yrot,zrot]) > > ### this applies a 3 item array of x/y/z rotations about the model's x/y/z-axes, > > ### this could also be the array returned by rotXYZ. > > ### it returns a new transformation that can then be used to reset the original... > > ### object.transformation=object.transformation.rotation_from_xyz_locally([xrot,yrot,zrot]) > > ### this applies a 3 item array of x/y/z rotations about the objects's x/y/z-axes, > > ### this could also be the array returned by rotXYZ. > > ### it returns a new transformation that can then be used to reset the original... > > ### > > class Geom;;Transformation > > def euler_angle(xyx=[]) > > m = self.xaxis.to_a + self.yaxis.to_a + self.zaxis.to_a > > if m[6] != 1 and m[6]!= 1 > > ry = -Math.asin(m[6]) > > rx = Math.atan2(m[7]/Math.cos(ry),m[8]/Math.cos(ry)) > > rz = Math.atan2(m[3]/Math.cos(ry),m[0]/Math.cos(ry)) > > else > > rz = 0 > > phi = Math.atan2(m[1],m[2]) > > if m[6] == -1 > > ry = Math;;PI/2 > > rx = rz + phi > > else > > ry = -Math;;PI/2 > > rx = -rz + phi > > end > > end > > return -rx if xyz==0 > > return -ry if xyz==1 > > return -rz if xyz==2 > > return [-rx,-ry,-rz] if xyz==[] > > end > > def getX > > self.to_a[12] > > end > > def getY > > self.to_a[13] > > end > > def getZ > > self.to_a[14] > > end > > def setX(x) > > if not x.class==Float and not x.class==Integer > > puts "Transformation;;setX( ) expects a Float or Integer." > > return nil > > end#if > > x=x.to_f > > t=self.to_a > > t[12]=x > > return self.set!(t) > > end > > def setY(y) > > if not y.class==Float and not y.class==Integer > > puts "Transformation;;setY( ) expects a Float or Integer." > > return nil > > end#if > > y=y.to_f > > t=self.to_a > > t[13]=y > > return self.set!(t) > > end > > def setZ(z) > > if not z.class==Float and not z.class==Integer > > puts "Transformation;;setZ( ) expects a Float or Integer." > > return nil > > end#if > > z=z.to_f > > t=self.to_a > > t[14]=z > > return self.set!(t) > > end > > def scaleX > > Math.sqrt(self.to_a[0]**2+self.to_a[1]**2+self.to_a[2]**2) > > end > > def scaleY > > Math.sqrt(self.to_a[4]**2+self.to_a[5]**2+self.to_a[6]**2) > > end > > def scaleZ > > Math.sqrt(self.to_a[8]**2+self.to_a[9]**2+self.to_a[10]**2) > > end > > def rotX > > #(Math.atan2(self.to_a[9],self.to_a[10])) > > #Math.acos(self.to_a[5]) > > euler_angle(0) > > end > > def rotY > > #(Math.arcsin(self.to_a[8])) > > #Math.acos(self.to_a[0]) > > euler_angle(1) > > end > > def rotZ > > #(-Math.atan2(self.to_a[4],self.to_a[0])) > > #Math.asin(self.to_a[4]) > > euler_angle(2) > > end > > def rotXYZ > > euler_angle > > end > > def rot_a ### rotation matrix 4x3 3 and 7 are nil > > t=self.to_a > > r=[] > > [0,1,2,3,4,5,6,7,8,9,10].each{|i|r[i]=t[i]} > > r[3]=nil > > r[7]=nil > > return r > > end > > def rotation_from_xyz(xyz) > > if not xyz.class==Array and not xyz[2] and not xyz[0].class==Float and not xyz[1].class==Float and not xyz[2].class==Float > > puts "Transformation;;rotation_from_xyz( ) expects a 3 Item Array of Angles [as Floats]." > > return nil > > end#if > > tx=Geom;;Transformation.rotation(self.origin,X_AXIS,xyz[0]) > > ty=Geom;;Transformation.rotation(self.origin,Y_AXIS,xyz[1]) > > tz=Geom;;Transformation.rotation(self.origin,Z_AXIS,xyz[2]) > > t=(tx*ty*tz) > > return self.set!(t) > > end > > def rotation_from_xyz_locally(xyz) > > if not xyz.class==Array and not xyz[2] and not xyz[0].class==Float and not xyz[1].class==Float and not xyz[2].class==Float > > puts "Transformation;;rotation_from_xyz_locally( ) expects a 3 Item Array of Angles [as Floats]." > > return nil > > end#if > > tx=Geom;;Transformation.rotation(self.origin,self.xaxis,xyz[0]) > > ty=Geom;;Transformation.rotation(self.origin,self.yaxis,xyz[1]) > > tz=Geom;;Transformation.rotation(self.origin,self.zaxis,xyz[2]) > > t=(tx*ty*tz) > > return self.set!(t) > > end > > def rotation_from_rot_a(rot_a) > > if not rot_a.class==Array and not rot_a[10] > > puts "Transformation;;rotation_from_rot_a( ) expects an 11 Item Array." > > return nil > > end#if > > t=self.to_a > > [0,1,2,4,5,6,8,9,10].each{|i|t[i]=rot_a[i].to_f} > > return self.set!(t) > > end > > def rotation_from(trans) > > if not trans.class==Geom;;Transformation > > puts "Transformation;;rotation_from( ) expects a Sketchup;;Transformation." > > return nil > > end#if > > t=self.to_a > > tt=trans.to_a > > [0,1,2,4,5,6,8,9,10].each{|i|t[i]=tt[i].to_f} > > return self.set!(t) > > end > > def origin_from(trans) > > if not trans.class==Geom;;Transformation > > puts "Transformation;;origin_from( ) expects a Sketchup;;Transformation." > > return nil > > end#if > > t=self.to_a > > tt=trans.to_a > > [12,13,14].each{|i|t[i]=tt[i].to_f} > > return self.set!(t) > > end > > end#class > > ### > >
Hey Tig, thanks for the great code, i might be doing something wrong here but this:
Selection = Sketchup.active_model.selection[0] > Rotation = Selection.transformation.rotXYZ
Gives an error,
Error; #<NameError; undefined local variable or method `xyz' for #<Geom;;Transformation;0xa747534>> > D;/PROGRA~1/Google/GOOGLE~1/Plugins/test.rb;128;in `euler_angle' > D;/PROGRA~1/Google/GOOGLE~1/Plugins/test.rb;197;in `rotXYZ' > D;/PROGRA~1/Google/GOOGLE~1/Plugins/test.rb;64
Any suggestions what could be going wrong?
There's a typo in the code that I corrected but never posted !
def euler_angle(xyx=[])
should be
def euler_angle(xyz=[])
also note what Dan said about naming conventions.....Here's a link to the corrected code http://forums.sketchucation.com/viewtopic.php?p=190874#p190874
-
@martinrinehart said:
@dburdick said:
I read your wonderful web-page description of the 4 x 4 matrix - ...
I am reading it too. Great job.Thanks.
-
Thanks to both
heh must have missed that type too time and again i looked it all over to see whats wrong -
@martinrinehart said:
@dburdick said:
I read your wonderful web-page description of the 4 x 4 matrix - ...
Very kind words, indeed. Many thanks.
For those not versed in the Transformation Matrix, my tutorial's Appendix T, introduces it, Appendix MM explains matrix multiplication and Chapter 16 explains how you can live without it (and includes a Matrix class, just in case).
Thank you Martin for those wonderful tutorials. I wasn't aware that transformation.to_a[15] is a divisor for a translation! As far as I am aware SketchUp itself keeps it equal to 1, but some plugins modify Wt (i.e. Component Stringer).
-
I have a question about the euler_angle method, especially about the xyz. I have searched the web and found information about this case, but it didn't result in an answer.
Here's how I read this piece of code:
when you call the method euler_angles you create an empty array under variable xyz as parameter. Then nothing happens with the array for the whole piece of code. At the end the array can be ==0 (contains one element which is equal to zero), ==1, ==2 or still empty. How can it be that the array can contain elements?
-
Words in ALLCAPS are reserved for constants.
Words in Titlecase are for Class and Module Identifiers, (which are also constants. Any word the starts with a capital character is a constant.)Bad:
Selection = Sketchup.active_model.selection[0] Rotation = Selection.transformation.rotXYZ
Good for variables:
selection = Sketchup.active_model.selection[0] rotation = selection.transformation.rotXYZ
-
@ruts said:
...when you call the method
euler_angle
you create an empty array under variablexyz
as parameter.The secret is that Ruby does not really "have" variables, even though the books use that name. Ruby has references that point at objects, and a reference can be made to point at any class of object, and then later be re-assigned to point at any other object of any class, at any time.
This is referred to as "weakly typed", but really Ruby references are not type locked at all.@ruts said:
Then nothing happens with the array for the whole piece of code.
Because it (the argument) is just being used as a switch to tell the method what the coder wants as an output. An empty array object is simply the default, which tells the method the calling code expects an array as a return object.
@ruts said:
At the end the array can be
==0
(contains one element which is equal to zero),==1
,==2
or still empty. How can it be that the array can contain elements?It cannot. You mis-understand. The method is not testing an array, it is testing a reference to the method argument to see if is pointing at integers
0
or1
or2
, or still pointing at[]
(the default empty array object,) and then returning either the indicated values, or an array of all three.IF you call the method with no arguments, or like
euler_angle([])
you will get an array of 3 values.
IF you call the method thus:euler_angle(0)
you will get the x value returned.
IF you call the method thus:euler_angle(1)
you will get the y value returned.
IF you call the method thus:euler_angle(2)
you will get the z value returned.The 0, 1 and 2 subscripts come from the SketchUp API's extension of the
Array
class, where 3 element arrays can act like points and vectors.Still have not read the book, I see.
-
I did delete the rotX/Y/Z methods, that's why I didn't understand where the variable xyz came from and why it could get value = 0/1/2. I do understand how methods with there variables work. Sorry was confused.
On the other hand, I have been working with the euler_angle method for a while and now that I'm closely getting to a complete script I have noticed this method only partial works (for me?). Does it work for you guys? When I did draw shapes with a given rotation, the method didn't succeed to calculate the right angles for me so I did some research and made some changes. Here's the code I use:
def self.rotation(trans) b = [trans.xaxis.to_a, trans.yaxis.to_a, trans.zaxis.to_a] m = b.transpose.flatten! if m[6] != 1 and m[6] != -1 ry = -Math.asin(m[6]) rx = Math.atan2(m[7]/Math.cos(ry),m[8]/Math.cos(ry)) rz = Math.atan2(m[3]/Math.cos(ry),m[0]/Math.cos(ry)) else rz = 0 phipos = Math.atan2(m[1],m[2]) phineg = Math.atan2(-m[1],-m[2]) if m[6] == -1 ry = Math;;PI/2 rx = rz + phipos else ry = -Math;;PI/2 rx = -rz + phineg end end return [rx.radians,ry.radians,rz.radians] end
First I found this document (page 5) that explains the calculations the way you do it. But it seems that you miss little pieces of code to make it complete.
When I did calculate the angles it yet didn't calculate the right angles. So I did try some things and found out that the angles that were calculated represent the transpose matrix of the rotation that I need. So I fixed this by transposing the rotation matrix before the calculations.
With these changes this piece of code does calculate the right angles. Did your code work for you?
-
You realize that this topic thread is like 4 and 1/2 years old ?
-
@dan rathbun said:
You realize that this topic thread is like 4 and 1/2 years old ?
Yes, I have seen it. That does not mean that people can't come here and look for code that works? That's how I landed here. I was looking for some code that could convert the rotation matrix to euler angles. I found out that this code didn't work for me, so I did correct it and now I share it here just in case people experience the same problem as me. I'm just excited that I finally can contribute a little instead of always asking things!
Nothing wrong with that, right?
-
Advertisement