
Fredo6 – TopoShaper Isocontour Service API Page 1 / 4 25 Mar 2015 

TOPOSHAPER ISOCONTOUR 

Service API 

 FREDO6 – 25 MAR 2015 

1. Introduction 

TopoShaper Isocontour is a standalone script which calculates a terrain from a set of 

isocontours (isocontour = curve of constant altitude). 

Since TopoShaper v2.1, the algorithm can also be invoked as a service from an external Ruby 

script, including from within an interactive Tool. 

The API is implemented in the module F6_TopoShaper, as the standalone method 

F6_TopoShaper.api_isocontour_calculation. Therefore, you should protect the invocation of 

the API with a section: 

if defined?( F6_TopoShaper.api_isocontour_calculation) 

  … 

end 

The method does NOT generate any geometry. It does NOT invoke a 

model.start_operation. The method does silently the calculation of the terrain from the 

specified contours and options, and then returns the geometry information describing the terrain 

surface, hull and skirt. 

2. Invoking the API 

a) Syntax 

The calculation method takes the following form 

results = F6_TopoShaper.api_isocontour_calculation(lst_contours, hsh_options=nil) 

Arguments: 

− lst_contours: a list of arrays of 3D points. Each array is therefore a single contour. 

− hsh_options (optional): a hash array of options (see below) 

Return value: 

− nil, if there is no contour provided 

− a structure containing the information about the contour or the error details when 

there is an error  (see next paragraph) 

b) Error protection 

The API is protected against errors (begin..rescue). If an error happens, the return value 

is a structure with a single field :error containing the Exception. So you must analyze the 

results return value: 

e = results.error 

if e 

#e is the exception, e.message the error message 

end 



Fredo6 – TopoShaper Isocontour Service API Page 2 / 4 25 Mar 2015 

c) Options 

The options are passed as a Hash array hsh_options, each option being defined by a 

symbol. If an option is omitted, it takes its default value.  

• :nx � grid dimension in X (i.e. number of cells in direction X) - (default 50) 

• :ny � grid dimension in Y (i.e. number of cells in direction Y) - (default 50) 

Note: if one of the dimensions nx or ny is omitted or passed nil, it is calculated from 

the other dimension. 

• :plane_normal � the ‘vertical vector’ for the terrain. If omitted, it is indeed taken 

as Z_AXIS 

• :option_hilltop � force hilltops and basins to be flat or round (default round). 

To make them flat, pass the value :flat; for round leave it nil or :auto 

• :notify_proc � optional callback method to be notified about the progress of the 

calculation. The calculation can take long, so this method may be useful if you wish to 

display the progress to the user. The callback method takes 2 arguments: 

- time: delta of time since the calculation started, in second 

- message: displayable text indicating the current step 

For instance 

notify_proc = proc { |time, message| puts "Time = #{time} msg = #{message}" } 

The output to the Ruby console would be 

Time = 0.0 msg = Analyzing Contours 

Time = 0.194011 msg = Computing the Enveloppe 

Time = 0.552031 msg = Generating the Grid 

Time = 0.768044 msg = Determining the Zones 

Time = 1.092062 msg = Interpolating Altitudes 

Time = 1.265072 msg = Extrapolating Altitudes 

Time = 1.282073 msg = Calculating Mesh 

Time = 1.325076 msg = Calculating Boundaries 

Example of options, where ny will be calculated:  

hsh_options = { :nx => 100, :option_hilltop => :flat, :notify_proc = notify_proc } 



Fredo6 – TopoShaper Isocontour Service API Page 3 / 4 25 Mar 2015 

d) Inspecting the results 

If the operation completed with no error, the return value is a structure containing the 

following fields: 

• :error � an Ruby Exception if there was an error, otherwise nil 

• :lst_cell_info � A list of cell information describing the terrain 

Each element of the list is an array with 2 elements 

- pts: the ordered points of the cell (4 or 3 points) 

- diago: a Boolean indicating whether the cell quad should be triangulated 

The following example illustrates how to exploit the information, for instance if you 

wish to generate the terrain mesh (quads and triangles): 

results.lst_cell_info.each do |cell_info| 

 pts, diago = cell_info 

 if diago 

  face1 = entities.add_face(pts[0..2]) 

  face2 = entities.add_face(pts[2], pts[3], pts[0]) 

 else 

  face = entities.add_face(pts) 

 end  

end  

•  : skirt_panels � A list of quads (or triangles) describing the skirt. 

The following example illustrates how to exploit the information, for instance if you 

wish to generate the skirt geometry: 

results. skirt_panels.each do |pts| 
 entities.add_face(pts) 

end  

• : hull_projection � A list of points describing the Hull projected at altitude 0.  

It is therefore a planar close loop. 

The following example illustrates how to exploit the information, for instance if you 

wish to draw the projected hull: 

entities.add_curve results.hull_projection  

• :nx � grid dimension in X used for calculation 

• :ny � grid dimension in Y used for calculation 

Note: these parameters are in the results because they could have been calculated. 

e) About the Point coordinates 

The points of the terrain, skirt and hull are returned in the same axes as the coordinates of 

the input contours. Similarly, the optional parameter plane_normal must be given in these 

local coordinates. 

It is therefore up to the calling method to perform the proper transformation from the 

Sketchup model geometry when specifying the points of the contours. 



Fredo6 – TopoShaper Isocontour Service API Page 4 / 4 25 Mar 2015 

3. A full Example 

The following example shows a full example, where the terrain is computed from a Group 

containing a set of Sketchup curves and then drawn as a group in the model: 

def api_example 

 #Extracting the group from selection 

 selection = Sketchup.active_model.selection 

 g = selection[0] 

 return unless selection.length == 1 && g.instance_of?(Sketchup::Group) 

 #Computing the curves 

 hcurves = {} 

 edges = g.entities.grep(Sketchup::Edge) 

 edges.each do |edge| 

  curve = edge.curve 

  hcurves[curve.entityID] = curve if curve 

 end 

 return if hcurves.empty? 

 #Computing the list of contours from the curve 

 tr = g.transformation #to get coordinates at top level 

 lst_contours = hcurves.values.collect do |curve| 

  curve.vertices.collect { |vx| tr * vx.position } 

 end 

 #Calling the API 

 notify_proc = proc { |time, message| puts "Time = #{time} msg = #{message}" } 

 hsh_options = { :nx => 50, :notify_proc => notify_proc } 

 results = F6_TopoShaper.api_isocontour_calculation lst_contours, hsh_options  

 #Testing the results 

 if results.error 

  puts "error #{results.error.message}" 

  return 

 end  

 #Drawing the terrain  

 model = Sketchup.active_model 

 model.start_operation "API Topo" 

 grp = model.active_entities.add_group 

 gent = grp.entities 

 results.lst_cell_info.each do |cell_info| 

  pts, diago = cell_info 

  if diago 

   f = gent.add_face(pts[0..2]) 

   f = gent.add_face(pts[2], pts[3], pts[0]) 

  else 

   f = gent.add_face(pts) 

  end  

 end  

 model.commit_operation 

end 

 

 

 


