
load instructor |
Copies instructor files on inaccessable drives to the temporary

directory and automates instructor file loading

Chapters
1. Introduction

2. Basic Use

3. Advanced Use

4. Additional Code Snippets

5. Credits

6. Changelog

On this page
1. Introduction

2. Basic Use

Check for Updates
Visit [code] Load Instructor at

forums.sketchucation.com

Module Author
Niall Campbell

(bentleykfrog)

1. Introduction
If you have been considering writing an instructor file for your tool, you are

probably aware of Sketchup’s getInstructorContentDirectory method. This is a

method used by Sketchup to return a path to your ‘instructor’ folder. This is the

folder that contains an index.html file to display in the ‘Instructor’ window (Window-

>Instructor). However, the main issue with getInstructorContentDirectory is that

it works on a relative path from the ‘helpcontent/tool/’ directory. This means

that if a user of your tool installs the tool in a volume that is different to the

volume that Sketchup runs from (lets say ‘F:’), getInstructorContentDirectory will

not be able to access the instructor directory. For this reason, I’ve written Load

Instructor.

Load Instructor is a ruby script that will copy your instructor folder to the

system’s temporary directory when the instructor folder can not be accessed

by a relative path. Load Instructor will then use getInstructorContentDirectory

to return a relative path to your instructor folder, regardless of whether your

instructor folder was copied to the temporary directory or left in its original

location.

What this means is that, with Load Instructor, your tool can be completely

portable across platforms.

Load Instructor is written as a Mixin Module. If this is completely foreign to you,

don’t worry. You don’t need to know much about Mixin Modules to use the script.

In short, all you need to know is that a Mixin Module enables you to “mix-in” the

module’s instance method(s) (ie. Load Instructor’s methods) to a custom class

definition (ie. your Tool).

Below I’ve written two examples of use: a Basic Use, which assumes that you’ll

have access to Sketchup’s ‘Plugins’ and ‘Tools’ folders; and an Advanced Use,

which assumes that you don’t but you still want to make your script portable.

2. Basic Use
These instructions show you how to setup the Load Instructor underneath one of

Sketchup’s $LOAD_PATH’s (like ‘Plugins’ or ‘Tools’) and then include and run the

Load Instructor from your tool.

2.1 Create a ‘mixin’ subdirectory under one of the $LOAD_PATH paths. The

‘Plugins’ folder is fine. (If you don’t know what $LOAD_PATH paths are

available, open the Ruby Console and type: $LOAD_PATH, then hit enter

or return)

2.2 Copy the file ‘load_instructor.rb’ into that ‘mixin’ directory.

2.3 Make sure you have an ‘instructor’ folder beneath your plugin’s

subdirectory, and make sure this folder includes a file ‘index.html’. (for

example: if your script kept all its extra files in the directory ‘my_cool_

script’, your ‘instructor’ folder should be in this directory, like: ‘my_cool_

script/instructor/’)

load instructor |
Copies instructor files on inaccessable drives to the temporary

directory and automates instructor file loading

Chapters
1. Introduction

2. Basic Use

3. Advanced Use

4. Additional Code Snippets

5. Credits

6. Changelog

On this page
2. Basic Use

Check for Updates
Visit [code] Load Instructor at

forums.sketchucation.com

Module Author
Niall Campbell

(bentleykfrog)

2.4 Add the lines to require() and include() to include the Load Instructor

code into your tool, like:

module MyModule
 class MyCoolScript
 # Include the Load Instructor code
 require('mixin/load_instructor.rb')
 include(Mixin::LoadInstructor)
 # The rest of your code
 end #class MyCoolScript
end #module MyModule

2.5 Call the lins_setup('your_tools_subdirectory') method from inside your

Tool’s initialize() method, like the example below:

module MyModule
 class MyCoolScript
 # Include the Load Instructor code
 require('mixin/load_instructor.rb')
 include(Mixin::LoadInstructor)

 def initialize
 # Call the Load Instructor with your tools
 # subdirectory as the first argument
 lins_setup('my_cool_script')

 # The rest of your tool initialize code goes here
 end #def initialize
 # The rest of your code
 end #class MyCoolScript
end #module MyModule

By adding that code to your Tool’s initialize() method, you’ve now

automated the copy of your instructor files to the temporary directory.

You’ve also automated the getInstructorContentDirectory method, so

there’s no need to use it in your Tool.

As an additional note, the previous example assumes the following file

structure:

 [any $LOAD_PATH]/mixin/load_instructor.rb
 [any $LOAD_PATH]/my_cool_script.rb
 [any $LOAD_PATH]/my_cool_script/some_image.png
 [any $LOAD_PATH]/my_cool_script/etc..
 [any $LOAD_PATH]/my_cool_script/instructor/index.html
 [any $LOAD_PATH]/my_cool_script/instructor/etc...

#BB:# Note that the first argument passed to lins_setup() matches the folder
name ‘my_cool_script’ and the folder ‘my_cool_script’ contains the
‘instructor’ folder with all your instructor files inside. If you store your
scripts files in a different directory, pass this directory name as the first
argument to lins_setup().

load instructor |
Copies instructor files on inaccessable drives to the temporary

directory and automates instructor file loading

Chapters
1. Introduction

2. Basic Use

3. Advanced Use

4. Additional Code Snippets

5. Credits

6. Changelog

On this page
3. Advanced Use

Check for Updates
Visit [code] Load Instructor at

forums.sketchucation.com

Module Author
Niall Campbell

(bentleykfrog)

3. Advanced Use
Now you’re probably thinking that if your tool is in the ‘Plugins’ or ‘Tools’ folder

that there’s no need to copy the instructor files to the temporary directory, as

those folders are on the same drive as Sketchup. Well you’re right, but some

script loading plugins add additional paths to the $LOAD_PATH array. These

paths can be on any drive, so there’s still a need to copy the instructor files to the

temporary directory.

Some other script loading plugins attempt to load your plugin into Sketchup

after Sketchup has started up, like Alex’s excellent Plugin Loader.

These script loading plugins are a nice way to get around certain permission

issues that may result when an admin grants access for a user to modify files

inside the Program Files/Program Files (x86) directories (the directories that

‘Plugins’ and ‘Tools’ both lie in. Instead, a user can have a plugin folder on a

separate part of the drive, or even a completely different drive to ‘C:’, so they

can still add plugins to Sketchup, and not risk modifying any of the system’s

delicates inside the Program Files/Program Files (x86) directories.

Its also possible that a user wants to keep one common plugins folder for all

versions of Sketchup they run. This means that the user only has to add a plugin

to one directory, to add it to all versions of Sketchup. It also means (if they store

their files on a portable storage device) that their plugins can be loaded on any

computer they wish to use.

So keeping your script portable and accessible from outside the ‘C:’ drive is

important. The instructions below will show you how to set up the Load Instructor

in a file that’s relative to your script, and then run Load Instructor with paths

relative to your script, so that your script becomes entirely portable.

3.1 Create a ‘mixin’ directory beneath your plugin’s subdirectory. (For

example: if your script keeps all its extra files in the directory ‘my_cool_

script’, the ‘mixin’ folder should be in this directory, like: ‘my_cool_script/

mixin/’)

3.2 Copy the file ‘load_instructor.rb’ to that ‘mixin’ directory

3.3 Make sure you have an ‘instructor’ folder beneath your plugin’s

subdirectory, and make sure this folder includes a file ‘index.html’. (for

example: if your script kept all its extra files in the directory ‘my_cool_

script’, your ‘instructor’ folder should be in this directory, like: ‘my_cool_

script/instructor/’)

load instructor |
Copies instructor files on inaccessable drives to the temporary

directory and automates instructor file loading

Chapters
1. Introduction

2. Basic Use

3. Advanced Use

4. Additional Code Snippets

5. Credits

6. Changelog

On this page
3. Advanced Use

Check for Updates
Visit [code] Load Instructor at

forums.sketchucation.com

Module Author
Niall Campbell

(bentleykfrog)

3.4 Add the lines to require() and include() to include the Load Instructor

code into your tool, like:

module MyModule
 class MyCoolScript
 # Form a path from this script to load_instructor.rb
 script_directory = File.dirname(__FILE__)
 lins_directory = 'my_cool_script/mixin/load_instructor.rb'
 # Include the Load Instructor code
 require(File.join(script_directory , lins_directory))
 include(Mixin::LoadInstructor)
 # The rest of your code
 end #class MyCoolScript
end #module MyModule

This code first stores the directory that contains your ruby script in the

script_directory variable, then forms a path to the load_instructor.rb

file from this directory. The next line simply joins the two paths together

to form an absolute path to load_instructor.rb, which is passed to

require.

3.5 Now call the lins_setup() method from inside your tool’s initialize()

method, but this time pass it a second argument representing the

absolute path to the instructor folder, like below:

module MyModule
 class MyCoolScript
 # Form a path from this script to load_instructor.rb
 script_directory = File.dirname(__FILE__)
 lins_directory = 'my_cool_script/mixin/load_instructor.rb'
 # Include the Load Instructor code
 require(File.join(script_directory , lins_directory))
 include(Mixin::LoadInstructor)

 def initialize
 script_dir = File.dirname(__FILE__)
 ins_dir = 'my_cool_script/instructor'
 instructor_folder = File.join(sript_dir , ins_dir)
 # Call the Load Instructor with your tools
 # subdirectory as the first argument and the
 # absolute location of your instructor folder
 # as the second argument
 lins_setup('my_cool_script' , instructor_folder)
 # The rest of your tool initialize code goes here
 end #def initialize
 # The rest of your code
 end #class MyCoolScript
end #module MyModule

Notice that we still pass the tools subdirectory as the first argument. In

this case its not affecting the absolute location of the instructor folder,

rather its used to create a folder in the temporary directory to store

the copy of your ‘instructor’ folder beneath so it doesn’t overwrite any

other plugin’s copies of their ‘instructor’ folder.

load instructor |
Copies instructor files on inaccessable drives to the temporary

directory and automates instructor file loading

Chapters
1. Introduction

2. Basic Use

3. Advanced Use

4. Additional Code Snippets

5. Credits

6. Changelog

On this page
3. Advanced Use

4. Additional Code Snippets

Check for Updates
Visit [code] Load Instructor at

forums.sketchucation.com

Module Author
Niall Campbell

(bentleykfrog)

Now there’s a difference in the file structure in this example, so please

note: this example assumed the following file structure:

 [ANY PATH]/my_cool_script/mixin/load_instructor.rb
 [ANY PATH]/my_cool_script.rb
 [ANY PATH]/my_cool_script/some_image.png
 [ANY PATH]/my_cool_script/etc..
 [ANY PATH]/my_cool_script/instructor/index.html
 [ANY PATH]/my_cool_script/instructor/etc...

The subtle difference is that the ‘load_instructor.rb’ file is inside the

folder ‘/my_cool_script/mixin’ instead of just ‘/mixin’. This means that

when you copy the ‘/my_cool_script’ folder and the file ‘my_cool_

script.rb’ to a new location, the Load Instructor will be copied with it,

ensuring that your tool doesn’t break when someone copies or moves

it.

So now you have a completely portable version of your script, that can

be loaded from any drive, without breaking the link to your ‘instructor’

folder.

4. Additional Code Snippets
There are a few code snippets that could be helpful for you if you want to do

more complex things with Load Instructor. I’ve documented them here for your

reference.

4.1 You can retrieve the instructor folder and temp folder location paths

just after your call to lins_setup(), like:

Returning the folder variables
instructor_folder = @instructor_folder.dup
temp_folder = @temp_folder.dup

Setting the folder variables
@instructor_folder = instructor_folder
@temp_folder = temp_folder

Retrieving and setting these values might be helpful to you if you intend

to use these values later in your script. It may also be helpful if you

intend to modify the default values of the instructor and temp folders,

or if you intend to check whether or not these files exist.

#BB:# @temp_folder will return @instructor_folder when your script is running
on a Mac (all volumes can be accessed relatively on a Mac so there’s no
need to copy files to the temporary directory)

#BB:# On pc, @temp_folder will return the path to where it WILL store the
instructor folder, regardless of whether it needs to copy the instructor
folder to this location or not. See (4.3) for the method to check if the
instructor folder needs to be copied to the temporary directory.

load instructor |
Copies instructor files on inaccessable drives to the temporary

directory and automates instructor file loading

Chapters
1. Introduction

2. Basic Use

3. Advanced Use

4. Additional Code Snippets

5. Credits

6. Changelog

On this page
4. Additional Code Snippets

Check for Updates
Visit [code] Load Instructor at

forums.sketchucation.com

Module Author
Niall Campbell

(bentleykfrog)

#BB:# Note that when you call lins_setup() with one argument like lins_
setup(‘my_cool_script’), Load Instructor checks in what $LOAD_PATH
this file exists. If it can’t find the file it throws a script error. Also note that
when you call lins_setup() with a second argument like lins_setup(‘my_
cool_script’ , instructor_folder) Load Instructor trusts that there is
a folder at the path represented by the variable instructor_loader.
In other words, when you set the second variable, Load Instructor
doesn’t check whether or not this file exists. Also note, that when Load
Instructor creates the temporary directory to store the instructor folder,
first it checks if a directory already exists, and if it does (to preserve
consistency) it deletes this directory and the files in it, then loads the
instructor folder into this directory.

4.2 lins_setup() has a third argument that represents the path to the

temporary directory if you want to use a custom temporary directory

location. This third argument must be an absolute path to the directory,

like in the example below:

script_dir = File.dirname(__FILE__)
ins_dir = 'my_cool_script/instructor'
instructor_folder = File.join(sript_dir , ins_dir)
Store a custom path to the temporary directory
by first determining the operating system and
then Sketchup’s temporary directory variable
if (not RUBY_PLATFORM =~ /(mswin|mingw)/i) # on a Mac
 tmp_dir = ENV["TMPDIR"]
else
 tmp_dir = ENV["TEMP"]
end #if
custom_subdir = 'my_cool_script/instructor_wazoo'
temp_folder = File.join(tmp_dir , custom_subdir)
Call the Load Instructor with your tools
subdirectory as the first argument, the
absolute location of your instructor folder
as the second argument and the custom temporary
directory as the third argument
lins_setup(‘my_cool_script’ ,instructor_folder,temp_folder)

4.3 You can return the path to the instructor temporary folder from within

and outside your script by calling the respective methods: lins_return_

temp_instructor_folder_name() and temp_instructor_folder(). These

methods return the @instructor_folder if the script is run on a Mac, the

instructor temporary folder if the instructor folder and the temporary

folder exist on different volumes on PC, and false if the instructor folder

and the temporary folder exist on the same directory on PC.

Calling from within your class
temp_folder = lins_return_temp_instructor_folder_name()
Calling from outside your class
my_script_object = MyModule::MyCoolScript.new
temp_folder = my_script_object.temp_instructor_folder()

load instructor |
Copies instructor files on inaccessable drives to the temporary

directory and automates instructor file loading

Chapters
1. Introduction

2. Basic Use

3. Advanced Use

4. Additional code snippets

5. Credits

6. Changelog

On this page
5. Credits

6. Changelog

Check for Updates
Visit [code] Load Instructor at

forums.sketchucation.com

Module Author
Niall Campbell

(bentleykfrog)

4.4 Finally, you can get the relative path from the Sketchup ‘helpcontent/

tool’ folder to the tools instructor folder from inside and outside your

class by calling the respective methods: lins_return_relative_path()

or relative_instructor_folder(). Both of these methods will return the

relative path to the instructor folder, regardless of whether it was

copied to the temporary folder or not.

Calling from within your class
temp_folder = lins_return_relative_path()
Calling from outside your class
my_script_object = MyModule::MyCoolScript.new
temp_folder = my_script_object.relative_instructor_folder()

5. Credits
I need to thank Dan Rathbun from the Sketchucation forum for his generous help

and guidance with this script. He should be credited for (to say the least):

• Writing the Mixin Module container for the script

• Defining getInstructorContentDirectory from within the Module

• The script’s platform checking

• Public methods to retrieve the instructor folder & temp folder

• Very helpful advice with .rbs integration

• $LOAD_PATH checking for the plugin’s instructor folder

• Init method rename to reduce multiple init method clashes

• And lots of other helpful advice and guidance

Also, credit should go to thomthom (Thomas Thomassen) and TIG from the

Sketchucation forum as lins_return_relative_path() is based on thomthom’s

get_instructor_path() method and TIG’s getInstructorContentDirectory method.

I hope you get the best use out of this script

-niall campbell (bentleykfrog)

6. Changelog

 =2011-03-14: Version 1.0
 — Official First Release (from beta)

