
Fredo6 – Animator Service API for Renderers Page 1 / 4 v1.1 – 26 Mar 2016

ANIMATOR

Service API for Rendering Software

 FREDO6 – V1.1 – 26 MAR 2016

1. Introduction

Animator is a script dedicated to the animation of Sketchup models. It provides a parametric,

interactive framework to control movements of objects and cameras along a timeline.

The animations, called ‘Clips’, are built from a combination of unit transformations (called

sequences) such as translation, rotation, spin, scaling, explosion, etc, so that it is possible to

calculate accurately the exact position of objects and cameras for any frame of the video
at any specified frame rate (i.e. the animation is not based on the native Sketchup scene

transition mechanism).

The Service API for Renderers provides various methods to drive the animation from an

external script, in order to capture each frame of the animation for subsequent rendering.

2. Checking the presence of Animator

The API is implemented in the module F6_Animator. You can check the presence of Animator

and its API by the following test:

defined?(F6_Animator.api_initialize)

There is a method to get the current version of Animator as a String, for instance “1.0a”.

F6_Animator.get_version

3. Typical API workflow

The API is designed to be called from an external script without launching the Animator

interactive tool itself. The API does not run as a Sketchup interactive Tool (i.e. Sketchup::Tool

class). So the calling script can itself run as an interactive Sketchup::Tool.

As a prerequisite, you need two conditions:

• Not running the Animator interactive plugin

• the current model to include an animation clip (you can have several clips in the model)

The typical workflow includes the following steps:

1) Create an Animator API object: @animator = F6_Animator.api_initialize

This method loads all information related to Animator clips from the model.

2) Select a Clip and generation Options: this is done via a built-in dialog box provided

by the Animator API (@animator.api_dialog_clip_options).

3) Processing the frames: This is where you sequentially export the view and objects

along the time line (@animator.api_next_frame). Alternatively, the external script

can manage the calculation of frame timing and go through the animation by positioning

it a given times by @animator.api_goto_time or @animator.api_goto_frame.

4) Terminating the capture session: @animator.api_terminate. This method is

VERY IMPORTANT, as it puts back all objects in their original position and free up

Animator. In normal processing, it is called implicitly however.

Fredo6 – Animator Service API for Renderers Page 2 / 4 v1.1 – 26 Mar 2016

4. API Description

4.1. API Initialization

The first step is to get an API handle and load the Animator information from the model.

@animator = F6_Animator.api_initialize

The object returned is a class instance. It is to be used in all subsequent calls to the API.

Note that api_initialize returns nil in the following cases (displaying a message box):

− The current model is New (i.e. not saved)

− Animator interactive tool is currently running

− There are no playable clips in the model

4.2. API Termination

To finish the API session, you MUST call the Termination method. This will free up

Animator and reset all objects to their initial position.

@animator.api_terminate

It is very important to call the termination method IN ALL CASES, in particular in case of

errors, because all object movements are handled through the move! method, and therefore

are not registered in the Undo stack.

Note that api_terminate is called implicitly at the end of the process based on

api_next_frame. So the protection is really when the process fails unexpectedly.

For convenience, api_terminate can be safely called several times.

4.3. Setting the Clip and Options

The API provides a built-in method, @animator.api_dialog_clip_options, to let the

user select the Clip and related Options.

Because web dialogs, even modal, are not blocking on Mac, the invocation of the dialog box

uses a callback method (return_proc(hinfo)) to notify the caller when the dialog session

has finished, either validating the input or cancelling the process.

So the call will look like:

@animator.api_dialog_clip_options() { |hinfo| return_proc(hinfo) }

…where the hinfo argument passed to the return method is a Hash Array or nil.

• hinfo gives information about the export parameters. The process could now start.

• nil if the user has cancelled the dialog box. The process should stop. Note that

api_terminate is called implicitly.

Fredo6 – Animator Service API for Renderers Page 3 / 4 v1.1 – 26 Mar 2016

hinfo is a Hash array with the following fields:

− :video_name: name given to the animation

− :frame_rate: frame rate (ex: 25, for 25 frames per second)

− :number_frames: number of frames to be processed

− :frame_duration: duration of a frame in second

− :beg_time: time of beginning of animation, as selected (in second)

− :end_time: time of end of the animation, as selected (in second)

− :video_duration: nominal total duration of the animation (in second), regardless

of beg_time and end-time.

− :speed_factor: speed of the movie: 1 for normal speed, 0.5 for slower by 2, 2 for

accelerated by 2.

Note that some parameters are for information and can be ignored when moving through the

animation. However, the parameters :number_frames and :frame_duration are

calculated taking into account the frame_rate, the speed_factor as well as the beg_time and

end_time.

4.4. Processing the Frames in Sequence

Automatic Loop

Based on the selected options, you can go through each frame of the video by invoking

@animator.api_next_frame, which returns:

• [cur_time, inext_frame], current animation time and index of the current

frame

• nil when no more frames need to be processed. The process should stop. Note that

api_terminate is called implicitly.

Manual Loop

You can also go freely through each frame by invoking @animator.goto_frame or

@animator.goto_time.

• @animator.goto_frame(iframe) will position the animation at the specified

frame. Note that the first frame is 1 (not zero), and that iframe should be

comprised between 1 and hinfo [:number_frames]. With this method, frame 1

will correspond to the animation at :beg_time and the last frame at :end_time. If

iframe is negative, it is counted from the end, that is, -1 means last frame, -2 the

late before last, etc….

• @animator.goto_time(anim_time) will position the animation at the specified

time. Note that the animation time anim_time should be comprised between 0 and

hinfo [:video_duration]. Time is given in second. With this method, you are

not bound to the specified :beg_time and :end_time parameters.

With manual methods, do not forget to call api_terminate when finished.

Fredo6 – Animator Service API for Renderers Page 4 / 4 v1.1 – 26 Mar 2016

4.5. Summary of Full Process

Therefore, the whole rendering process could be done with the following pseudo-code:

def start_process

 @animator = F6_Animator.api_initialize

 return unless @animator

 @animator.api_dialog_clip_options() { |result| do_process(result) }

end

def do_process(result)

 #User cancelled the process in the dialog

 return unless result

 #Begin the Export process (ask other parameters, init progress bar, ….)

 …Start of the rendering process …

 #Processing the Frames in sequence

 while(@animator.api_next_frame)

 # at this point, view camera and objects are positioned in the current view

 begin

 …Export / Render the view and objects …

 rescue

 @animator.api_terminate

 …signal error …

 break

 end

 end

end

In practice however, it is not advised to process the rendering as a while loop, because it

may not give a continuous visual feedback to the user (and update a progress bar)

It may be a good idea to use UI.start_timer or other asynchronous mechanisms to give back

control to Sketchup so that the view is refreshed, as well as, to allow the user to interrupt the

process, which can take quite long.

Note however that, in any case, after a call to api_next_frame, the view camera and

objects are correctly positioned, whether this is or not reflected visually in the viewport.

