
Abstract
This paper describes a novel system for creating virtual creatures
that move and behave in simulated three-dimensional physical
worlds. The morphologies of creatures and the neural systems for
controlling their muscle forces are both generated automatically
using genetic algorithms. Different fitness evaluation functions are
used to direct simulated evolutions towards specific behaviors
such as swimming, walking, jumping, and following.

A genetic language is presented that uses nodes and connec-
tions as its primitive elements to represent directed graphs, which
are used to describe both the morphology and the neural circuitry
of these creatures. This genetic language defines a hyperspace con-
taining an indefinite number of possible creatures with behaviors,
and when it is searched using optimization techniques, a variety of
successful and interesting locomotion strategies emerge, some of
which would be difficult to invent or build by design.

1 Introduction
A classic trade-off in the field of computer graphics and animation
is that of complexity vs. control. It is often difficult to build inter-
esting or realistic virtual entities and still maintain control over
them. Sometimes it is difficult to build a complex virtual world at
all, if it is necessary to conceive, design, and assemble each com-
ponent. An example of this trade-off is that of kinematic control
vs. dynamic simulation. If we directly provide the positions and
angles for moving objects, we can control each detail of their
behavior, but it might be difficult to achieve physically plausible
motions. If we instead provide forces and torques and simulate the
resulting dynamics, the result will probably look correct, but then
it can be very difficult to achieve the desired behavior, especially
as the objects we want to control become more complex. Methods
have been developed for dynamically controlling specific objects
to successfully crawl, walk, or even run [11,12,16], but a new con-
trol algorithm must be carefully designed each time a new behav-
ior or morphology is desired.

Optimization techniques offer possibilities for the automatic
generation of complexity. The genetic algorithm is a form of artifi-
cial evolution, and is a commonly used method for optimization. A
Darwinian “survival of the fittest” approach is employed to search
for optima in large multidimensional spaces [5,7]. Genetic algo-
rithms permit virtual entities to be created without requiring an
understanding of the procedures or parameters used to generate
them. The measure of success, or fitness, of each individual can be

calculated automatically, or it can instead be provided interactively
by a user. Interactive evolution allows procedurally generated
results to be explored by simply choosing those that are the most
aesthetically desirable for each generation [2,18,19,21].

The user sacrifices some control when using these methods,
especially when the fitness is procedurally defined. However, the
potential gain in automating the creation of complexity can often
compensate for this loss of control, and a higher level of user influ-
ence is still maintained by the fitness criteria specification.

In several cases, optimization has been used to automatically
generate dynamic control systems for given articulated structures:
de Garis has evolved weight values for neural networks [4], Ngo
and Marks have performed genetic algorithms on stimulus-
response pairs [14], and van de Panne and Fiume have optimized
sensor-actuator networks [15]. Each of these methods has resulted
in successful locomotion of two-dimensional stick figures.

The work presented here is related to these projects, but differs
in several respects. In previous work, control systems were gener-
ated for fixed structures that were user-designed, but here entire
creatures are evolved: the optimization determines the creature
morphologies as well as their control systems. Also, here the crea-
tures’ bodies are three-dimensional and fully physically based. The
three-dimensional physical structure of a creature can adapt to its
control system, and vice versa, as they evolve together. The “ner-
vous systems” of creatures are also completely determined by the
optimization: the number of internal nodes, the connectivity, and
the type of function each neural node performs are included in the
genetic description of each creature, and can grow in complexity
as an evolution proceeds. Together, these remove the necessity for
a user to provide any specific creature information such as shape,
size, joint constraints, sensors, actuators, or internal neural param-
eters. Finally, here a developmental process is used to generate the
creatures and their control systems, and allows similar components
including their local neural circuitry to be defined once and then
replicated, instead of requiring each to be separately specified.
This approach is related to L-systems, graftal grammars, and
object instancing techniques [6,8,10,13,20].

It is convenient to use the biological terms genotype and pheno-
type when discussing artificial evolution. A genotype is a coded
representation of a possible individual or problem solution. In bio-
logical systems, a genotype is usually composed of DNA and con-
tains the instructions for the development of an organism. Genetic
algorithms typically use populations of genotypes consisting of
strings of binary digits or parameters. These are read to produce
phenotypes which are then evaluated according to some fitness cri-
teria and selectively reproduced. New genotypes are generated by
copying, mutating, and/or combining the genotypes of the most fit
individuals, and as the cycle repeats the population should ascend
to higher and higher levels of fitness.

Variable length genotypes such as hierarchical Lisp expressions

Evolving Virtual Creatures

Karl Sims

Thinking Machines Corporation
245 First Street, Cambridge, MA 02142

or other computer programs can be useful in expanding the set of
possible results beyond a predefined genetic space of fixed dimen-
sions. Genetic languages such as these allow new parameters and
new dimensions to be added to the genetic space as an evolution
proceeds, and therefore define rather a hyperspace of possible
results. This approach has been used to genetically program solu-
tions to a variety of problems [1,9], as well as to explore procedur-
ally generated images and dynamical systems [18,19].

In the spirit of unbounded genetic languages, directed graphs
are presented here as an appropriate basis for a grammar that can
be used to describe both the morphology and nervous systems of
virtual creatures. New features and functions can be added to crea-
tures, or existing ones removed, so the levels of complexity can
also evolve.

The next two sections explain how virtual creatures can be rep-
resented by directed graphs. The system used for physical simula-
tion is summarized in section 4, and section 5 describes how
specific behaviors can be selected. Section 6 explains how evolu-
tions are performed with directed graph genotypes, and finally a
range of resulting creatures is shown.

2 Creature Morphology
In this work, the phenotype embodiment of a virtual creature is a
hierarchy of articulated three-dimensional rigid parts. The genetic
representation of this morphology is a directed graph of nodes and
connections. Each graph contains the developmental instructions
for growing a creature, and provides a way of reusing instructions
to make similar or recursive components within the creature. A
phenotype hierarchy of parts is made from a graph by starting at a

(segment)

(leg
segment)

(body
segment)

(head)

(body)
(limb
segment)

Genotype: directed graph. Phenotype: hierarchy of 3D parts.

Figure 1: Designed examples of genotype graphs and correspond-
ing creature morphologies.

defined root-node and synthesizing parts from the node informa-
tion while tracing through the connections of the graph. The graph
can be recurrent. Nodes can connect to themselves or in cycles to
form recursive or fractal like structures. They can also connect to
the same child multiple times to make duplicate instances of the
same appendage.

Each node in the graph contains information describing a rigid
part. The dimensions determine the physical shape of the part. A
joint-type determines the constraints on the relative motion
between this part and its parent by defining the number of degrees
of freedom of the joint and the movement allowed for each degree
of freedom. The different joint-types allowed are: rigid, revolute,
twist, universal, bend-twist, twist-bend, or spherical. Joint-limits
determine the point beyond which restoring spring forces will be
exerted for each degree of freedom. A recursive-limit parameter
determines how many times this node should generate a phenotype
part when in a recursive cycle. A set of local neurons is also
included in each node, and will be explained further in the next
section. Finally, a node contains a set of connections to other
nodes.

Each connection also contains information. The placement of a
child part relative to its parent is decomposed into position, orien-
tation, scale, and reflection, so each can be mutated independently.
The position of attachment is constrained to be on the surface of
the parent part. Reflections cause negative scaling, and allow simi-
lar but symmetrical sub-trees to be described. A terminal-only flag
can cause a connection to be applied only when the recursive limit
is reached, and permits tail or hand-like components to occur at the
end of chains or repeating units.

Figure 1 shows some simple hand-designed graph topologies
and resulting phenotype morphologies. Note that the parameters in
the nodes and connections such as recursive-limit are not shown
for the genotype even though they affect the morphology of the
phenotype. The nodes are anthropomorphically labeled as “body,”
“leg,” etc. but the genetic descriptions actually have no concept of
specific categories of functional components.

3 Creature Control
A virtual “brain” determines the behavior of a creature. The brain
is a dynamical system that accepts input sensor values and pro-
vides output effector values. The output values are applied as
forces or torques at the degrees of freedom of the body’s joints.
This cycle of effects is shown in Figure 2.

Sensor, effector, and internal neuron signals are represented
here by continuously variable scalars that may be positive or nega-
tive. Allowing negative values permits the implementation of sin-
gle effectors that can both push and pull. Although this may not be
biologically realistic, it simplifies the more natural development of
muscle pairs.

Figure 2: The cycle of effects between brain, body and world.

Physical simulationControl system

Body

3D World

Brain

Effectors

Sensors

3.1 Sensors
Each sensor is contained within a specific part of the body, and
measures either aspects of that part or aspects of the world relative
to that part. Three different types of sensors were used for these
experiments:

1. Joint angle sensors give the current value for each degree of
freedom of each joint.

2. Contact sensors activate (1.0) if a contact is made, and nega-
tively activate (-1.0) if not. Each contact sensor has a sensitive
region within a part’s shape and activates when any contacts occur
in that area. In this work, contact sensors are made available for
each face of each part. No distinction is made between self-contact
and environmental contact.

3. Photosensors react to a global light source position. Three
photosensor signals provide the coordinates of the normalized
light source direction relative to the orientation of the part. This is
the same as having pairs of opposing photosensitive surfaces in
which the left side negates its response and adds it to the right side
for the total response.

Other types of sensors, such as accelerometers, additional prop-
rioceptors, or even sound or smell detectors could also be imple-
mented, but these basic three are enough to allow interesting and
adaptive behaviors to occur. The inclusion of the different types of
sensors in an evolving virtual brain can be enabled or disabled as
appropriate depending on the physical environment and behavior
goals. For example, contact sensors are enabled for land environ-
ments, and photosensors are enabled for following behaviors.

3.2 Neurons
Internal neural nodes are used to give virtual creatures the possibil-
ity of arbitrary behavior. Ideally a creature should be able to have
an internal state beyond its sensor values, or be affected by its his-
tory.

In this work, different neural nodes can perform diverse func-
tions on their inputs to generate their output signals. Because of
this, a creature’s brain might resemble a dataflow computer pro-
gram more than a typical neural network. This approach is proba-
bly less biologically realistic than just using sum and threshold
functions, but it is hoped that it makes the evolution of interesting
behaviors more likely. The set of functions that neural nodes can
have is: sum, product, divide, sum-threshold, greater-than, sign-of,
min, max, abs, if, interpolate, sin, cos, atan, log, expt, sigmoid,
integrate, differentiate, smooth, memory, oscillate-wave, and oscil-
late-saw.

Some functions compute an output directly from their inputs,
while others such as the oscillators retain some state and can give
time varying outputs even when their inputs are constant. The
number of inputs to a neuron depends on its function, and here is at
most three. Each input contains a connection to another neuron or
a sensor from which to receive a value. Alternatively, an input can
simply receive a constant value. The input values are first scaled
by weights before being operated on.

For each simulated time interval, every neuron computes its
output value from its inputs. In this work, two brain time steps are
performed for each dynamic simulation time step so signals can
propagate through multiple neurons with less delay.

3.3 Effectors
Each effector simply contains a connection to a neuron or a sensor
from which to receive a value. This input value is scaled by a con-
stant weight, and then exerted as a joint force which affects the

dynamic simulation and the resulting behavior of the creature. Dif-
ferent types of effectors, such as sound or scent emitters, might
also be interesting, but only effectors that exert simulated muscle
forces are used here.

Each effector controls a degree of freedom of a joint. The effec-
tors for a given joint connecting two parts, are contained in the part
further out in the hierarchy, so that each non-root part operates
only a single joint connecting it to its parent. The angle sensors for
that joint are also contained in this part.

Each effector is given a maximum-strength proportional to the
maximum cross sectional area of the two parts it joins. Effector
forces are scaled by these strengths and not permitted to exceed
them. Since strength scales with area, but mass scales with vol-
ume, as in nature, behavior does not always scale uniformly.

3.4 Combining Morphology and Control
The genotype descriptions of virtual brains and the actual pheno-
type brains are both directed graphs of nodes and connections. The
nodes contain the sensors, neurons, and effectors, and the connec-
tions define the flow of signals between these nodes. These graphs
can also be recurrent, and as a result the final control system can
have feedback loops and cycles.

However, most of these neural elements exist within a specific
part of the creature. Thus the genotype for the nervous system is a
nested graph: the morphological nodes each contain graphs of the
neural nodes and connections. Figure 3 shows an example of an
evolved nested graph.

When a creature is synthesized from its genetic description, the
neural components described within each part are generated along
with the morphological structure. This causes blocks of neural
control circuitry to be replicated along with each instanced part, so
each duplicated segment or appendage of a creature can have a
similar but independent local control system.

These local control systems can be connected to enable the pos-
sibility of coordinated control. Connections are allowed between
adjacent parts in the hierarchy: the neurons and effectors within a
part can receive signals from sensors or neurons in their parent part
or in their child parts.

Creatures are also given a set of neurons that are not associated

Figure 3: Example evolved nested graph genotype. The outer
graph in bold describes a creature’s morphology. The inner graph
describes its neural circuitry. J0 and J1 are joint angle sensors, and
E0 and E1 are effector outputs. The dashed node contains central-
ized neurons that are not associated with any part.

J0

J1

E0

E1

>

+

saw

wav

itp

wav

mem

abs

with a specific part, and are copied only once into the phenotype.
This gives the opportunity for the development of global synchro-
nization or centralized control. These neurons can receive signals
from each other or from sensors or neurons in specific instances of
any of the creature’s parts, and the neurons and effectors within the
parts can optionally receive signals from these unassociated-neu-
ron outputs.

In this way the genetic language for morphology and control is
merged. A local control system is described for each type of part,
and these are copied and connected into the hierarchy of the crea-

J0

J1

J0

J1

J0

J1

J0

J1

Saw

Wav

itp

Wav

mem

abs

>

+

>

+

Wav

mem

abs

>

+

>

+

1.95

1.40

1.97

1.54

1.99

1.68

2.01

1.82

-1.00
-1.60
0.00

1.00
-0.93
-1.09

-0.86
0.12
-0.43

1.62
1.19
0.32

-1.00
-1.87

-0.59

1.42
0.02

-0.58
-1.43

1.37
0.03

-0.58
-0.55

3.27
0.15
0.32

-1.10
-1.87

-0.59

1.33
0.04

-0.58
0.33

1.27
0.05

-0.58
0.00

Figure 4a: The phenotype morphology generated from the
evolved genotype shown in figure 3.

Figure 4b: The phenotype “brain” generated from the evolved
genotype shown in figure 3. The effector outputs of this control
system cause paddling motions in the four flippers of the mor-
phology above.

Sensors Neurons Effectors

ture’s body to make a complete distributed nervous system. Figure
4a shows the creature morphology resulting from the genotype in
figure 3. Again, parameters describing shapes, recursive-limits,
and weights are not shown for the genotype even though they
affect the phenotype. Figure 4b shows the corresponding brain of
this creature. The brackets on the left side of figure 4b group the
neural components of each part. Some groups have similar neural
systems because they are copies from the same genetic description.
This creature can swim by making cyclic paddling motions with
four similar flippers. Note that it can be difficult to analyze exactly
how a control system such as this works, and some components
may not actually be used at all. Fortunately, a primary benefit of
using artificial evolution is that understanding these representa-
tions is not necessary.

4 Physical Simulation
Dynamics simulation is used to calculate the movement of crea-
tures resulting from their interaction with a virtual three-dimen-
sional world. There are several components of the physical
simulation used in this work: articulated body dynamics, numeri-
cal integration, collision detection, collision response, friction, and
an optional viscous fluid effect. These are only briefly summarized
here, since physical simulation is not the emphasis of this paper.

Featherstone’s recursive O(N) articulated body method is used
to calculate the accelerations from the velocities and external
forces of each hierarchy of connected rigid parts [3]. Integration
determines the resulting motions from these accelerations and is
performed by a Runge-Kutta-Fehlberg method which is a fourth
order Runge-Kutta with an additional evaluation to estimate the
error and adapt the step size. Typically between 1 and 5 integration
time steps are performed for each frame of 1/30 second.

The shapes of parts are represented here by simple rectangular
solids. Bounding box hierarchies are used to reduce the number of
collision tests between parts from O(N2). Pairs whose world-space
bounding boxes intersect are tested for penetrations, and collisions
with a ground plane are also tested if one exists. If necessary, the
previous time-step is reduced to keep any new penetrations below
a certain tolerance. Connected parts are permitted to interpenetrate
but not rotate completely through each other. This is achieved by
using adjusted shapes when testing for collisions between con-
nected parts. The shape of the smaller part is clipped halfway back
from its point of attachment so it can swing freely until its remote
end makes contact.

Collision response is accomplished by a hybrid model using
both impulses and penalty spring forces. At high velocities, instan-
taneous impulse forces are used, and at low velocities springs are
used, to simulate collisions and contacts with arbitrary elasticity
and friction parameters.

A viscosity effect is used for the simulations in underwater
environments. For each exposed moving surface, a viscous force
resists the normal component of its velocity, proportional to its sur-
face area and normal velocity magnitude. This is a simple approxi-
mation that does not include the motion of the fluid itself, but is
still sufficient for simulating realistic looking swimming and pad-
dling dynamics.

It is important that the physical simulation be reasonably accu-
rate when optimizing for creatures that can move within it. Any
bugs that allow energy leaks from non-conservation, or even
round-off errors, will inevitably be discovered and exploited by the
evolving creatures. Although this can be a lazy and often amusing
approach for debugging a physical modeling system, it is not nec-
essarily the most practical.

5 Behavior Selection
In this work, virtual creatures are evolved by optimizing for a spe-
cific task or behavior. A creature is grown from its genetic descrip-
tion as previously explained, and then it is placed in a dynamically
simulated virtual world. The brain provides effector forces which
move parts of the creature, the sensors report aspects of the world
and the creature’s body back to the brain, and the resulting physi-
cal behavior of the creature is evaluated. After a certain duration of
virtual time (perhaps 10 seconds), a fitness value is assigned that
corresponds to the success level of that behavior. If a creature has a
high fitness relative to the rest of the population, it will be selected
for survival and reproduction as described in the next section.

Before creatures are simulated for fitness evaluation, some sim-
ple viability checks are performed, and inappropriate creatures are
removed from the population by giving them zero fitness values.
Those that have more than a specified number of parts are
removed. A subset of genotypes will generate creatures whose
parts initially interpenetrate. A short simulation with collision
detection and response attempts to repel any intersecting parts, but
those creatures with persistent interpenetrations are also discarded.

Computation can be conserved for most fitness methods by dis-
continuing the simulations of individuals that are predicted to be
unlikely to survive the next generation. The fitness is periodically
estimated for each simulation as it proceeds. Those are stopped
that are either not moving at all or are doing somewhat worse than
the minimum fitness of the previously surviving individuals.

Many different types of fitness measures can be used to perform
evolutions of virtual creatures. Four examples of fitness methods
are described here.

5.1 Swimming
Physical simulation of a water environment is achieved by turning
off gravity and adding the viscous water resistance effect as
described. Swimming speed is used as the fitness value and is mea-
sured by the distance traveled by the creature’s center of mass per
unit time. Straight swimming is rewarded over circling by using
the maximum distance from the initial center of mass. Continuing
movement is rewarded over that from a single initial push, by giv-
ing the velocities during the final phase of the test period a stronger
relative weight in the total fitness value.

5.2 Walking
The term walking is used loosely here to indicate any form of land
locomotion. A land environment is simulated by including gravity,
turning off the viscous water effect, and adding a static ground
plane with friction. Additional inanimate objects can be placed in
the world for more complex environments. Again, speed is used as
the selection criteria, but the vertical component of velocity is
ignored.

For land environments, it can be necessary to prevent creatures
from generating high velocities by simply falling over. This is
accomplished by first running the simulation with no friction and
no effector forces until the height of the center of mass reaches a
stable minimum.

5.3 Jumping
Jumping behavior can be selected for by measuring the maximum
height above the ground of the lowest part of the creature. An
alternative method is to use the average height of the lowest part of
the creature during the duration of simulation.

5.4 Following
Another evaluation method is used to select for creatures that can
adaptively follow a light source. Photosensors are enabled, so the
effector output forces and resulting behavior can depend on the rel-
ative direction of a light source to the creature. Several trials are
run with the light source in different locations, and the speeds at
which a creature moves toward it are averaged for the fitness
value. Following behaviors can be evolved for both water and land
environments.

Fleeing creatures can also be generated in a similar manner, or
following behavior can be transformed into fleeing behavior by
simply negating a creature’s photo sensor signals.

Once creatures are found that exhibit successful following
behaviors, they can be led around in arbitrary paths by movement
of the light sources.

6 Creature Evolution
An evolution of virtual creatures is begun by first creating an ini-
tial population of genotypes. These initial genotypes can come
from several possible sources: new genotypes can be synthesized
“from scratch” by random generation of sets of nodes and connec-
tions, an existing genotype from a previous evolution can be used
to seed the initial population of a new evolution, or a seed geno-
type can be designed by hand. However, no hand-designed seed
genotypes were used in the examples shown here.

A survival-ratio determines the percentage of the population
that will survive each generation. In this work, population sizes
were typically 300, and the survival ratio was 1/5. If the initially
generated population has fewer individuals with positive fitness
than the number that should survive, another round of seed geno-
types is generated to replace those with zero fitness.

For each generation, creatures are grown from their genetic
descriptions, and their fitness values are measured by a method
such as those described in the previous section. The individuals
whose fitnesses fall within the survival percentile are then repro-
duced, and their offspring fill the slots of those individuals that did
not survive. The survivors are kept in the population for the next
generation, and the total size of the population is maintained. The
number of offspring that each surviving individual generates is
proportional to its fitness – the most successful creatures make the
most children.

Offspring are generated from the surviving creatures by copy-
ing and combining their directed graph genotypes. When these
graphs are reproduced they are subjected to probabilistic variation
or mutation, so the corresponding phenotypes are similar to their
parents but have been altered or adjusted in random ways.

6.1 Mutating Directed Graphs
A directed graph is mutated by the following sequence of steps:

1. The internal parameters of each node are subjected to possi-
ble alterations. A mutation frequency for each parameter type
determines the probability that a mutation will be applied to it at
all. Boolean values are mutated by simply flipping their state. Sca-
lar values are mutated by adding several random numbers to them
for a Gaussian-like distribution so small adjustments are more
likely than drastic ones. The scale of an adjustment is relative to
the original value, so large quantities can be varied more easily and
small ones can be carefully tuned. A scalar can also be negated.
After a mutation occurs, values are clamped to their legal bounds.
Some parameters that only have a limited number of legal values
are mutated by simply picking a new value at random from the set

of possibilities.
2. A new random node is added to the graph. A new node nor-

mally has no effect on the phenotype unless a connection also
mutates a pointer to it. Therefore a new node is always initially
added, but then garbage collected later (in step 5) if it does not
become connected. This type of mutation allows the complexity of
the graph to grow as an evolution proceeds.

3. The parameters of each connection are subjected to possible
mutations, in the same way the node parameters were in step 1.
With some frequency the connection pointer is moved to point to a
different node which is chosen at random.

4. New random connections are added and existing ones are
removed. In the case of the neural graphs these operations are not
performed because the number of inputs for each element is fixed,
but the morphological graphs can have a variable number of con-
nections per node. Each existing node is subject to having a new
random connection added to it, and each existing connection is
subject to possible removal.

5. Unconnected elements are garbage collected. Connectedness
is propagated outwards through the connections of the graph, start-
ing from the root node of the morphology, or from the effector
nodes of neural graphs. Although leaving the disconnected nodes
for possible reconnection might be advantageous, and is probably
biologically analogous, at least the unconnected newly added ones
are removed to prevent unnecessary growth in graph size.

 Since mutations are performed on a per element basis, geno-
types with only a few elements might not receive any mutations,
where genotypes with many elements would receive enough muta-
tions that they rarely resemble their parents. This is compensated
for by temporarily scaling the mutation frequencies by an amount
inversely proportional to the size of the current graph being
mutated, such that on the average, at least one mutation occurs in
the entire graph.

Mutation of nested directed graphs, as are used here to repre-
sent creatures, is performed by first mutating the outer graph and
then mutating the inner layer of graphs. The inner graphs are
mutated last because legal values for some of their parameters
(inter-node neural input sources) can depend on the topology of the
outer graph.

6.2 Mating Directed Graphs
Sexual reproduction allows components from more than one par-
ent to be combined into new offspring. This permits features to
evolve independently and later be merged into a single individual.
Two different methods for mating directed graphs are presented.

The first is a crossover operation (see figure 5a). The nodes of
two parents are each aligned in a row as they are stored, and the
nodes of the first parent are copied to make the child, but one or
more crossover points determine when the copying source should
switch to the other parent. The connections of a node are copied
with it and simply point to the same relative node locations as
before. If the copied connections now point out of bounds because
of varying node numbers they are randomly reassigned.

A second mating method grafts two genotypes together by con-
necting a node of one parent to a node of another (see figure 5b).
The first parent is copied, and one of its connections is chosen at
random and adjusted to point to a random node in the second par-
ent. Newly unconnected nodes of the first parent are removed and
the newly connected node of the second parent and any of its
descendants are appended to the new graph.

A new directed graph can be produced by either of these two
mating methods, or asexually by using only mutations. Offspring

from matings are sometimes subjected to mutations afterwards, but
with reduced mutation frequencies. In this work a reproduction
method is chosen at random for each child to be produced by the
surviving individuals using the ratios: 40% asexual, 30% cross-
overs, and 30% grafting. A second parent is chosen from the survi-
vors if necessary, and a new genotype is produced from the parent
or parents.

After a new generation of genotypes is created, a phenotype
creature is generated from each, and again their fitness levels are
evaluated. As this cycle of variation and selection continues, the
population is directed towards creatures with higher and higher fit-
ness.

6.3 Parallel Implementation
This genetic algorithm has been implemented to run in parallel on
a Connection Machine® CM-5 in a master/slave message passing
model. A single processing node performs the genetic algorithm. It
farms out genotypes to the other nodes to be fitness tested, and
gathers back the fitness values after they have been determined.
The fitness tests each include a dynamics simulation and although
most can execute in nearly real-time, they are still the dominant
computational requirement of the system. Performing a fitness test
per processor is a simple but effective way to parallelize this
genetic algorithm, and the overall performance scales quite lin-
early with the number of processors, as long as the population size
is somewhat larger than the number of processors.

Each fitness test takes a different amount of time to compute
depending on the complexity of the creature and how it attempts to
move. To prevent idle processors from just waiting for others to
finish, new generations are started before the fitness tests have
been completed for all individuals. Those slower simulations are
simply skipped during that reproductive cycle, so all processors
remain active. With this approach, an evolution with population
size 300, run for 100 generations, might take around three hours to
complete on a 32 processor CM-5.

7 Results
Evolutions were performed for each of the behavior selection
methods described in section 5. A population of interbreeding
creatures often converges toward homogeneity, but each separately
run evolution can produce completely different locomotion strate-
gies that satisfy the requested behavior. For this reason, many sep-
arate evolutions were performed, each for 50 to 100 generations,
and the most successful creatures of each evolution were
inspected. A selection of these is shown in figures 6-9. In a few
cases, genotypes resulting from one evolution were used as seed
genotypes for a second evolution.

The swimming fitness measure produced a large number of

Figure 5: Two methods for mating directed graphs.

a. Crossovers: b. Grafting:

parent 1

parent 2

child

parent 1 parent 2

child

simple paddling and tail wagging creatures. A variety of more
complex strategies also emerged from some evolutions. A few
creatures pulled themselves through the water with specialized
sculling appendages. Some used two symmetrical flippers or even
large numbers of similar flippers to propel themselves, and several
multi-segmented watersnake creatures evolved that wind through
the water with sinusoidal motions.

The walking fitness measure also produced a surprising number
of simple creatures that could shuffle or hobble along at fairly high
speeds. Some walk with lizard-like gaits using the corners of their
parts. Some simply wag an appendage in the air to rock back and
forth in just the right manner to move forward. A number of more
complex creatures emerged that push or pull themselves along,
inchworm style. Others use one or more leg-like appendages to
successfully crawl or walk. Some hopping creatures even emerged
that raise and lower arm-like structures to bound along at fairly
high speeds.

The jumping fitness measure did not seem to produce as many
different strategies as the swimming and walking optimizations,
but a number of simple jumping creatures did emerge.

The light-following fitness measure was used in both water and
land environments, and produced a wide variety of creatures that
can swim or walk towards a light source. Some consistently and
successfully follow the light source at different locations. Others
can follow it some of the time, but then at certain relative locations
fail to turn towards it. In the water environment, some developed
steering fins that turn them towards the light using photosensor
inputs. Others adjust the angle of their paddles appropriately as
they oscillate along.

Sometimes a user may want to exert more control on the results
of this process instead of simply letting creatures evolve entirely
automatically. Aesthetic selection is a possible way to achieve this,

Figure 6: Creatures evolved for swimming.

but observation of the trial simulations of every creature and pro-
viding every fitness value interactively would require too much
patience on the part of the user. A convenient way of mixing auto-
matic selection with aesthetic selection, is to observe the final suc-
cessful results of a number of evolutions, and then start new
evolutions with those that are aesthetically preferred. Although the
control may be limited, this gives the user some influence on the
creatures that are developed.

Another method of evolving creatures is to interactively evolve
a morphology based on looks only, or alternatively hand design the
morphology, and then automatically evolve a brain for that mor-
phology that results in a desirable behavior.

Creatures that evolved in one physical world can be placed in
another and evolved further. An evolved watersnake, for example,
was placed on land and then evolved to crawl instead of swim.

Figure 7: Creatures evolved for walking.

Figure 9: Following behavior. For each creature, four separate tri-
als are shown from the same starting point toward different light
source goal locations.

Figure 8: Creatures evolved for jumping.

8 Future Work
One direction of future work would be to experiment with addi-
tional types of fitness evaluation methods. More complex behav-
iors might be evolved by defining fitness functions that could
measure the level of success at performing more difficult tasks, or
even multiple tasks. Fitness could also include the efficiency at
which a behavior was achieved. For example, a fitness measure
might be the distance traveled divided by the amount of energy
consumed to move that distance.

Alternatively, fitness could be defined in a more biologically
realistic way by allowing populations of virtual creatures to com-
pete against each other within a physically simulated changing
world. Competition has been shown to facilitate complexity, spe-
cialization, or even social interactions [17,22]. It becomes difficult
to define explicit evaluations that can select for “interesting”
behavior, but perhaps systems like these could help produce such
results.

Another direction of future work might be to adjust the genetic
language of possible creatures to describe only those that could
actually be built as real robots. The virtual robots that can best per-
form a given task in simulation would then be assembled, and
would hopefully also perform well in reality.

Much work could be done to dress up these virtual creatures to
give them different shapes and improved rendered looks. Flexible
skin could surround or be controlled by the rigid components. Var-
ious materials could be added such as scales, hair, fur, eyes, or ten-
tacles, and they might flow or bounce using simple local dynamic
simulations, even if they did not influence the overall dynamics.
The shape details and external materials could also be included in
the creatures’ genetic descriptions and be determined by artificial
evolution.

9 Conclusion
In summary, a system has been described that can generate autono-
mous three-dimensional virtual creatures without requiring cum-
bersome user specifications, design efforts, or knowledge of
algorithmic details. A genetic language for representing virtual
creatures with directed graphs of nodes and connections allows an
unlimited hyperspace of possible creatures to be explored. It is
believed that these methods have potential as a powerful tool for
the creation of desirable complexity for use in virtual worlds and
computer animation.

As computers become more powerful, the creation of virtual
actors, whether animal, human, or completely unearthly, may be
limited mainly by our ability to design them, rather than our ability
to satisfy their computational requirements. A control system that
someday actually generates “intelligent” behavior might tend to be
a complex mess beyond our understanding. Artificial evolution
permits the generation of complicated virtual systems without
requiring design, and the use of unbounded genetic languages
allows evolving systems to increase in complexity beyond our
understanding. Perhaps methods such as those presented here will
provide a practical pathway toward the creation of intelligent
behavior.

Acknowledgments
Thanks to Gary Oberbrunner and Matt Fitzgibbon for Connection
Machine and software help. Thanks to Lew Tucker and Thinking
Machines Corporation for supporting this research. Thanks to
Bruce Blumberg and Peter Schröder for dynamic simulation help
and suggestions. And special thanks to Pattie Maes.

References
1. Cramer, N.L., “A Representation for the Adaptive Generation

of Simple Sequential Programs,” Proceedings of the First
International Conference on Genetic Algorithms, ed. by J.
Grefenstette, 1985, pp.183-187.

2. Dawkins, R., The Blind Watchmaker, Harlow Longman, 1986.
3. Featherstone, R., Robot Dynamics Algorithms, Kluwer Aca-

demic Publishers, Norwell, MA, 1987.
4. de Garis, H., “Genetic Programming: Building Artificial Ner-

vous Systems Using Genetically Programmed Neural Network
Modules,” Proceedings of the 7th International Conference on
Machine Learning, 1990, pp.132-139.

5. Goldberg, D.E., Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, 1989.

6. Hart, J., “The Object Instancing Paradigm for Linear Fractal
Modeling,” Graphics Interface, 1992, pp.224-231.

7. Holland, J.H., Adaptation in Natural and Artificial Systems,
Ann Arbor, University of Michigan Press, 1975.

8. Kitano, H., “Designing neural networks using genetic algo-
rithms with graph generation system,” Complex Systems,
Vol.4, pp.461-476, 1990.

9. Koza, J., Genetic Programming: on the Programming of Com-
puters by Means of Natural Selection, MIT Press, 1992.

10. Lindenmayer, A., “Mathematical Models for Cellular Interac-
tions in Development, Parts I and II,” Journal of Theoretical
Biology, Vol.18, 1968, pp.280-315.

11. McKenna, M., and Zeltzer, D., “Dynamic Simulation of
Autonomous Legged Locomotion,” Computer Graphics,
Vol.24, No.4, July 1990, pp.29-38.

12. Miller, G., “The Motion Dynamics of Snakes and Worms,”
Computer Graphics, Vol.22, No.4, July 1988, pp.169-178.

13. Mjolsness, E., Sharp, D., and Alpert, B., “Scaling, Machine
Learning, and Genetic Neural Nets,” Advances in Applied
Mathematics, Vol.10, pp.137-163, 1989.

14. Ngo, J.T., and Marks, J., “Spacetime Constraints Revisited,”
Computer Graphics, Annual Conference Series, 1993, pp.343-
350.

15. van de Panne, M., and Fiume, E., “Sensor-Actuator Net-
works,” Computer Graphics, Annual Conference Series, 1993,
pp.335-342.

16. Raibert, M., and Hodgins, J.K., “Animation of Dynamic
Legged Locomotion,” Computer Graphics, Vol.25, No.4, July
1991, pp.349-358.

17. Ray, T., “An Approach to the Synthesis of Life,” Artificial Life
II, ed. by Langton, Taylor, Farmer, & Rasmussen, Addison-
Wesley, 1991, pp.371-408.

18. Sims, K., “Artificial Evolution for Computer Graphics,” Com-
puter Graphics, Vol.25, No.4, July 1991, pp.319-328.

19. Sims, K., “Interactive Evolution of Dynamical Systems,”
Toward a Practice of Autonomous Systems: Proceedings of the
First European Conference on Artificial Life, ed. by Varela,
Francisco, & Bourgine, MIT Press, 1992, pp.171-178.

20. Smith, A.R., “Plants, Fractals, and Formal Languages,” Com-
puter Graphics, Vol.18, No.3, July 1984, pp.1-10.

21. Todd, S., and Latham, W., Evolutionary Art and Computers,
London, Academic Press, 1992.

22. Yaeger, L., “Computational Genetics, Physiology, Metabo-
lism, Neural Systems, Learning, Vision, and Behavior or Poly-
World: Life in a New Context,” Artificial Life III, ed. by C.
Langton, Santa Fe Institute Studies in the Sciences of Com-
plexity, Proceedings Vol. XVII, Addison-Wesley, 1994,
pp.263-298.

