
Fredo6 – LibTraductor.rb Page 1 / 20 v1.0 – 02 November 2007

LANGUAGE SUPPORT IN SKETCHUP

LibTraductor.rb

A RUBY LIBRARY FOR SKETCHUP V5 AND V6

Foreword

When I designed the script bezierspline.rb I indeed bumped into the problem of language

translation, both as a script programmer and as a script user. I made some research on what

existed in terms of practices and tools and found very little. In general, scripts are written in a

single language (English usually), and then the script is converted by someone into other

languages, by modifying strings in the code and renaming the script file. For instance you

have bezier.rb and fr_bezier.rb on the Crai Ruby Depot.

There are a few issues with this approach:

• Having several versions of the file makes it more difficult to keep potential upgrades

and bug fixing in sync.

• Some errors can be made when translating strings embedded in the source code. You

can forget to translate some, or accidentally translate strings that you should not.

So I came up with this small library LibTraductor.rb and a set of practices to rationalize a

little bit the coding and the language translation management of Sketchup scripts.

The principle is to provide a way to define and use strings that carry their own translated

version.

The macro provides utility functions to support:

• The definition and usage of multi-language strings, including substitution patterns

with %1, …, %9

• Mass assignment of strings to variables

• The designing of dialog boxes, with language translation and built-in validation

• A few utilities on hash arrays (marshaling, un-marshaling, pretty print)

Usage: just drop the macro file LibTraductor.rb in the Plugins folder of Sketchup, and in

your script just insert a statement:

 require "LibTraductor.rb".

Test utility: I published a test macro LibTraductor_test.rb to show some examples. It adds

4 menu items in the Plugins menu of Sketchup.

Compatibility: the macro should work with Sketchup v5 and v6 (Pro and free versions,

English and French). I tested it on Windows XP and Windows Vista. I don't know however if

it works on Mac

Fredo6 – LibTraductor.rb Page 2 / 20 v1.0 – 02 November 2007

1. Multi-Language Strings

1) Language setup

The macro uses the standard 2-character language code, for instance 'EN' for English, 'FR'

for French, 'SP' for Spanish, etc…The 'current' language is normally determined by the

language of your operating system, actually what is returned by a call to

Sketchup.get_locale.

You can also force the language by editing the configuration file LibTraductor.def and

declaring the 2-letter code of your language for the parameter TRADUCTOR_DEFAULT: For

instance. For instance if TRADUCTOR_DEFAULT = "FR", then all texts will be displayed in

French, regardless of your operating system. The statement TRADUCTOR_DEFAULT = ""

will put back the default to the operating system language.

You can get the current language by calling curlang = Traductor.get_language

You can change the current language by calling Traductor.get_language newlang. If

newlang is nil or empty, then the default language is reset.

Note: I know there is actually a trend to go down to idiomatic versions of the same language, for

instance 'EN_US' for American English, versus 'EN_EN' for Shakespeare English, but I thought

that it was too much of an effort in the context of Sketchup extensions, where language translation

is not so critical and where anyway the Sketchup application is itself available in very few

languages (so far only English for Version 6, and just recently French).

2) Declaring the multi-language strings

The convention for multi-language strings is to embed a sequence of strings separated by

language delimiters made of the 2-character language code, comprised between vertical

bars. For instance

Mystring = "Silence |EN| Welcome |DE| Wilkommen |FR| Bienvenue"

The first part of the string, here 'Silence', is the default string when the language is not

supported. In most cases, it would be English, so that you don't really need to use |EN|.

For convenience, the macro supports the declaration of translatable strings as an array of

strings instead. This is some time easier when you declare long texts. For instance:

Mystring = ["Silence", "|EN| Welcome", "|DE| Wilkommen",
 "|FR| Bienvenue"]

which you can also write in a more readable way:

Mystring = ["Silence",
 "|EN| Welcome",
 "|DE| Wilkommen",

 "|FR| Bienvenue"]

or even with mixing both styles:

Mystring = ["Silence |EN| Welcome |DE| Wilkommen",
 "|FR| Bienvenue"]

Note that when translating the string, the macro will ignore the leading and trailing

spaces between the |XX| delimiters. So,
Mystring = " Welcome Fredo |FR| Salut Fredo "

is actually treated as

Fredo6 – LibTraductor.rb Page 3 / 20 v1.0 – 02 November 2007

Mystring = "Welcome Fredo|FR|Salut Fredo"

3) Using multi-language strings in your code

The macro provides a versatile method, Translator.s, to compute and return the

relevant translated string from a multi-language string.. There are several ways of calling

this method
1
.

1) With one argument:

It is a good habit to define message strings as constants:

MY_STRING = "Silence |EN| Welcome |DE| Wilkommen |FR| Bienvenue"

Traductor.s MY_STRING ���� "Wilkommen" (if language is DE)

You can of course use Traductor.s with normal strings, deferring the time when you

will take care of the translation:

Traductor.s "Hello world" ���� "Hello World"

Remember however that the method removes leading and trailing spaces:

Traductor.s " Hello world " ���� "Hello World"

In such case, you can even pass the argument as a string with embedded evaluation

version = 6
Traductor.s "Hello Sketchup v.#{version}" ���� "Hello Sketchup v.6"

2) With multiple arguments to substitute tokens:

If you pass more arguments, they will be substituted in the string following the

convention %1, %2, …till %9.

For instance:

version = 6
Traductor.s "%1 Sketchup v.%2", 'Hello', version
 ���� "Hello Sketchup v.6"

The order of replacement tokens has no importance, and each can be used more than

once:

version = 6
Traductor.s "%2 Sketchup v.%1, %2", version, 'Hello'

 ���� "Hello Sketchup v.6, Hello"

Arguments that have no replacement tokens are simply not used.

version = 6
Traductor.s "Hello Sketchup v.%1", version, 'bonjour'

 ���� "Hello Sketchup v.6"

3) With default:

If you pass a second argument, but no substitution token in the string, then it will be

used as the default value returned in case the translatable string is nil.

sresult = get_a_string a, b, c #this call may return nil
Traductor.s sresult, "sresult was empty |FR|sresult est vide"

 ���� "sresult est vide" if it happens that sresult is nil (and language is French).

1
 Be careful to call the method with a capital 'T' in Traductor. <traductor.s> will generate an error

Fredo6 – LibTraductor.rb Page 4 / 20 v1.0 – 02 November 2007

Finally, note that if there only one argument and it is nil, then the method does not

generate an error but returns an empty string. So,

Traductor.s nil ���� ""

4) Alternate form

The Traductor module also provides an alternate form of call, with the brackets.

However, this form should be taken with care, as you must have NO space between

'Traductor' and the opening bracket.

Traductor["hello |FR|Bonjour"] ���� "Bonjour"

But

Traductor ["hello |FR|Bonjour"] ���� will generate an error

4) Mass assignment of multi-language strings to variables

In the real world of coding, you have to adopt a strategy for including multi-language

strings in your code.

• Either you always call Traductor.s when needed. The benefit is that you can then

change the language dynamically. The drawback if that you will process the

calculation of the translation in the current language (though this is not that long!).

• Or you compute the translations once and put them into module or class variables

so that they can be used anywhere without recalculation.

The choice may also be driven by questions of code readability.

In the second case, the libtraductor macro provides some support to assign multi-language

constants to variables, if you follow some simple naming conventions.

The general syntax is:

Traductor.load_translation module, const_pattern, binding, var_pattern

Let's assume that you have defined a series of multi-language strings in the header of your

module MyModule.
BZTRS_ChangePrecision = ["Precision --> ", "|FR|Pr\écision --> "]
BZTRS_ChangeDegree = ["Control points --> ", "|FR|Pts de contr\ôle --> "]
BZTRS_OpenEnd = ["Open-ended curve", "|FR|Courbe ouverte"]
BZTRS_StartEnd = ["Between Start/End", "|FR|Courbe entre pt d\ébut et fin "]

In the initialization part of your module or class, you may want to assign the translated

string corresponding to the current language to variables. You would simply write the

following statement:

 Traductor.load_translation MyModule, /BZTRS_/, binding, "@text_"

That would actually generate the following statements, in the exact context where you

made the call:
@text_ChangePrecision = ["Precision --> ", "|FR|Pr\écision --> "]
@text_ChangeDegree = ["Contol points --> ", "|FR|Pts de contr\ôle --> "]
@text_OpenEnd = ["Open-end curve", "|FR|Courbe ouverte"]
@text_StartEnd = ["Between Start/End", "|FR|Courbe entre pt d\ébut et fin "]

The first argument is the module in which the constants are defined, usually, the module

you made the call from, but not always if you group constant definitions in a central,

common module.

Fredo6 – LibTraductor.rb Page 5 / 20 v1.0 – 02 November 2007

The second argument is a regular expression to select the constants that should be

translated and assigned to variables.

The third argument, binding, is necessary so that the variables are given the scope of

the place where you invoke Traductor.load_translation. Don't bother too much, just

pass binding and it will work.

The fourth argument is the replacement string. Note that if this third argument is absent,

then it is taken as "@msg_" by default.

By following some naming conventions, you can spare time in using multi-language

strings!

5) More on multi-language string support

Keep leading or trailing spaces

In some occasions you may want to keep leading or trailing spaces, which otherwise

would be stripped out automatically by Traductor. The method for this is to use a

special character ~ in front of the spaces you want to preserve at the beginning of the

string (or after the spaces at the end). For instance:

a = [" ~ Hello ~ World ~ ",

 "|FR| " ~ Bonjour ~ monde ~ "]

puts "<" + Traductor[a] + ">"

����

< Bonjour ~ monde > if the language is French

< Hello ~ World > otherwise

Note that the delimiter character ~ is not itself replaced by a space.

Multi-line text

You can freely use the newline character \n if you have several lines.

For instance

a = " line1\n line2 \nline3 "

puts "<" + Traductor[a] + ">"

����

<line1

 line2

line3> in any language

Note however that Traductor will not eliminate the leading and trailing spaces in each

line, except leading spaces in the first one and trailing spaces in the last one.

Quoted text with %q and %Q

You can also define your string by using the special quote construction %q (for single

quoted strings) and %Q (for double quoted strings, recommended).

a = %Q{ line1\nline2 |FR|Ligne1\n ligne2} is valid

Fredo6 – LibTraductor.rb Page 6 / 20 v1.0 – 02 November 2007

Text in mode HERE

Ruby allows defining texts in their original form, by the construction <<HERE …

HERE (and actually derived forms). It is supported as well by Traductor.

For instance,

a = <<HERE
~ Here is a text
 with several lines
 line 1
 line 2
 line 3
 |FR|
~ Voici un texte
 sur plusieurs lignes
 Ligne1
 ligne2
 ligne3
HERE

Then the following call….

Traductor.messagebox a

 ….will generate in French and in other languages:

6) Good practices for multi-language support

In the definition of multi-language strings, I would recommend you always have a

default string not prefixed with any language code. For instance if you define your

string as Mystring = "|EN| Welcome |FR| Bienvenue", then, if the current language is

|DE|, the translation would be "|EN| Welcome |FR| Bienvenue" (so not nice), whereas

if you define it as Mystring = "Welcome |FR| Bienvenue", you would get "Welcome",

whatever the non-French language is, including English.

Second, it is strongly advised to put all your translatable strings defined as constants

in the top section of your module, so that they can be easily retrieved and possibly

translated by someone else, without digging into your code.

If you have other strings constants that must not be translated, make it clear to the reader

too.

I also stressed the benefits of following some naming conventions, whatever it is, as seen

in the previous section.

You can have a look at my own practices in my macro bezierspline.rb

Fredo6 – LibTraductor.rb Page 7 / 20 v1.0 – 02 November 2007

2. Message Box

The Traductor macro provides Traductor.messagebox, which has an equivalent

functionality as the UI.messagebox verb, but, as you could expect, with the support of multi-

language strings.

The syntax is actually the same as the Sketchup UI.messagebox verb, except that you can

pass multi-language strings for the message and title arguments. So it exists in 3 forms,

depending on whether you pass or not the second and third arguments, with the same return

value convention as for UI.messagebox (i.e. the index of the button pressed)

Button_index = Traductor.messagebox message #just OK button

Button_index = Traductor.messagebox message, nbtype

Button_index = Traductor.messagebox message, nbtype, title

…which is actually equivalent to:

Button_index = UI.messagebox Traductor[message], nbtype, Traductor[title]

A more advanced form is provided to encode variable arguments as %1, %9 in the message:

Button_index = Traductor.messagebox_arg message, nbtype, title, *args

…which is actually equivalent to:

Button_index = UI.messagebox Traductor[message,*args], nbtype, Traductor[title]

For instance:

a = 23

msg = "Value of %2 is %1 |FR| la valeur de %2 est %1"

Traductor.messagebox_arg msg, MB_OK, "Results|FR|Resultats", a, "a"

As a reminder, nbtype can take the following values, with indication of the button index:

- MB_OK – Contains an OK (1) button

- MB_OKCANCEL – Contains OK (1) and CANCEL (2)buttons

- MB_ABORTRETRYCANCEL – Contains ABORT (3), RETRY (4), and CANCEL (2)

buttons

- MB_YESNOCANCEL – Contains YES (6), NO (7), and CANCEL (2) buttons

- MB_YESNO – Contains YES (6) and NO (7) buttons

- MB_RETRYCANCEL – Contains RETRY (4) and CANCEL (2) buttons

- MB_MULTILINE – Contains an OK (1) button. In a MB_MULTILINE message box, the

message is displayed as a multi-line message with scrollbars (as needed).

Note that the title argument does not seem to be used by Sketchup in all cases. In my version,

it works with the option MB_MULTILINE. For other options, the title is always "Sketchup".

Fredo6 – LibTraductor.rb Page 8 / 20 v1.0 – 02 November 2007

3. Dialog Box

Initially my intent was to adapt Sketchup dialog boxes (verb UI.inputbox) to support multi-

language strings. However, while coding, I realized I could do a little bit more, at least in

2 areas:

• Structuring the results in a way which is more independent of the dialog box itself

• Validating the output results

1) Overview – How to construct a dialog box

Before you can use a dialog box, you need to design its template, which can be done with

the following steps:

Creating the dialog box object:

 dlg = Traductor::DialogBox.new title

Declaring fields, either string, numeric or unit-based numeric, or enumeration list:

 dlg.field_string symbol, label, default, validation_pattern

 dlg.field_numeric symbol, label, default, value_min, value_max

 dlg.field_enum symbol, label, default, enum_hash

Showing the dialog box:

Hash_results = dlg.show hash_initial_values

Compared to the traditional Sketchup UI.Inputbox, the Traductor macro provides a few

enhancements:

• Default values and results are formatted as hash array, not as arrays. This means

that you are not depending any longer on the order of fields as displayed. This may

not appear as an immediate benefit, but it actually gives some independence

between the way you prompt the user and the way you collect his inputs.

• Validation is integrated for simple checks, such as min /max values for integer, or

pattern matching for strings.

• Enumeration list are based on hash arrays too, meaning that the default value and

result is not the string that is shown to the user, which is indeed language

dependent, but a symbolic value which is language independent.

Let's review this in more details.

Fredo6 – LibTraductor.rb Page 9 / 20 v1.0 – 02 November 2007

2) Creating the dialog box object

The Traductor macro comes with a class DialogBox, which you can instantiate with the

new method, taking one or more parameters:

 dlg = Traductor::DialogBox.new title

 dlg = Traductor::DialogBox.new title, validation_proc, context

In the second form, you can pass your own method validation_proc to validate the

output of the user, which can be useful if, for instance, the value of some fields depends

on the value of other fields. The additional argument context will be passed as an

argument when calling the validation procedure and contains whatever contextual data

you want.

3) Creating fields of the dialog boxes

When you have a Dialog Box object, you can insert fields. Each field is given a unique

symbolic name (as a string), which will be the index of the initial values you pass when

showing the dialog box, as well as the results when the user has pressed OK.

The label of the field is indeed a multi-language string and will appear in the current

language along the rules we have seen in previous sections.

For convenience, I have defined 3 categories of fields: String, Numeric and

Enumeration.

• String fields

The syntax is

 dlg.field_string symbol, label, default,

 valid_pattern=nil, msg_pattern=nil

where

- Symbol is the unique symbolic name of the field, as a string

- label is the label appearing in front of the input field, as a multi-language

string

- default is the default value appearing in the field if nothing else is specified,

as a multi-language string

- valid_pattern is an optional multi-language string containing a regular

expression that the input string entered by the user must respect. If nil, then no

validation is performed. Note that you need to double the backslashes when

you use special characters; ex: "\\A\\w\\w\\Z" to force only 2 characters

(equivalent to /\A\w\w\Z/).

- msg_pattern is an optional multi-language string indicating the constraint

on the string (as a regular expression is not always that clear to a user!)

For instance, the following declaration will generate a field named "Name", with a

label "Nom:" in French, and "Name:" in other languages, and which must contain

'aa' in French and 'oo' in other languages.

 dlg.field_string "Name", "Name:|FR|Nom:",
 "enter name |FR| Entrez un nom",

 "oo |FR| aa",
 "must contain 'oo'",
 "|FR| doit contenir un 'aa'"]

Fredo6 – LibTraductor.rb Page 10 / 20 v1.0 – 02 November 2007

• Numeric fields

Numeric fields can be used to enter numbers, whether integer or floats or Sketchup

distances or coordinates. The general syntax is:

 dlg.field_numeric symbol, label, default, vmin=nil, vmax=nil

where:

- Symbol is the unique symbolic name of the field, as a string

- label is the label appearing in front of the input field, as a multi-language string

- default is the default numeric value appearing in the field if nothing else is

specified

- vmin is the lower bound limit of the value. It is optional. If omitted or nil, then no

validation is performed

- vmax is the upper bound limit of the value. It is optional. If omitted or nil, then

no validation is performed

For instance, the following declaration will generate a field named "NbPoints", with a

label "Nombre de points:" in French, and "Number of Points" in other languages, and

which must be comprised between 3 and 100. The default value is 5.

 dlg.field_numeric "NbPoints",

 "Number of points:|FR| Nombre de points:",

 5, 3, 100

For floats, it works the same, with the Ruby rules to define float numbers.

For Sketchup distance or coordinates, you just need to append the indication of units. In

Sketchup, the internal value is always in inches, but you can specify your own. For

instance:

 dlg.field_numeric "Len", "Length:|FR|Longueur", 4.cm, 3.cm, 100.cm

The good thing is that Sketchup will automatically convert your specified unit into the

current model units.

Be careful to pass vmin and vmax in the same form as the default value. For convenience,

the limits are indicated after the field label when specified.

Fredo6 – LibTraductor.rb Page 11 / 20 v1.0 – 02 November 2007

• Enumeration fields (also called combo boxes)

In the standard Sketchup UI.Inputbox verb, you pass directly the string enumeration as

an argument, the string chosen by the user is returned in the results. Obviously, when you

are in multi-language environment, this will not be convenient in order to branch your

code based on the return value.

If for instance you need the user to choose between Circle and Polygon, your enumeration

parameter will be "Circle|Polygon" in English, but "Cercle|Polygone" in French. So

your code would have to test the return value in both languages.

I propose a slightly different approach by using Hash arrays instead, so that you can give

an absolute code to each option, regardless of the string appearing to the user in the

current language. In the example above, you would simply define the enumeration as:

Enu_hash = { 'C' => "Circle |FR| Cercle",

 'P' => "Polygon |FR| Polygone" }

so that what you have to test in the return value is just the code, independent of the

language, here 'C' or 'P'.

The syntax for adding an enumeration field to a dialog box is the following:

dlg.field_enum symbol, label, default, enu_hash

where

 enu_hash is the list of options encoded as a hash array, as seen above.

4) Passing values and getting results

Once the dialog box has been defined, which is normally done once, you can show it to

the user, with filling it with some values, and then getting the resulting output.

The standard Sketchup UI.Inputbox verb uses Arrays for the input values and the output

results, with the array index based on the order of fields. The LibTraductor macro uses

hash arrays instead, where the keys are the symbols of the fields, regardless of their order

in the dialog box. I found it more readable in the code, and more flexible for potential

evolutions of your code.

So you invoke the dialog box with a call to the class method show, which return either nil

if the user pressed Cancel, or the results as a hash array if the user pressed OK.

For convenience, I provide several forms of invocations, noting that hash_values is a

hash array containing the input values i.e. those appearing as initial values in the dialog

box):

• Call with one argument: hash_results = dlg.show hash_values

In this case, hash_results is false if the user pressed Cancel, or contains the results

if the user pressed OK.

• Call with two arguments: status = dlg.show hash_values, hash_results

In this case, hash_results contains the results of the dialog box, whatever button

was pressed, whereas status indicate whether the user pressed Cancel (nil) or

contains the reference to the results.

Fredo6 – LibTraductor.rb Page 12 / 20 v1.0 – 02 November 2007

• Call with one argument, overriding inputs with outputs (note the exclamation

mark!):
status = dlg.show! hash_values_and_results

In this case, hash_values_and_results is used both to pass inputs and to receive

outputs.

• Call with NO argument:
status = dlg.show

In this case, the initial values of the dialog box are those defined by default, and the

dialog box will then always show the previous values validated (so a kind of auto-

updating).

Note that, regardless of how the dialog box is called, the results can always be obtained

as:

• The return value of the show method, when user pressed OK

• The attribute hash_results of the dialog box object, for instance

myresults = dlg.hash_results

5) Modifying items of a dialog box

Actually the same methods field_xxx that were used to create items in a dialog box can

serve to modify them. The convention is however slightly different: if an argument is

passed nil, then the internal value is not altered. Indeed, you must be sure that the dialog

item has first been created, otherwise you would create a new one.

A few examples:

• dlg.field_numeric "NbPoints", nil, nil, 4, 12

will only modify the vmin (to 4) and vmax (to 12) of the numeric item with symbolic name

"NbPoints" , without altering the label and the default

• dlg.field_string "STR", "new label", nil

will only modify the label of the field

• dlg.field_enum "EE", nil, 'T', new_enu_hash

will only modify the list of values and the default

It is possible to retrieve the internal values of a dialog items, by using the method

get_item_property, passing the key and the property name, both as strings (for

convenience, I made it case insensitive). For instance,

Value_min = dlg.get_item_property "NbPoints", 'vmin'

Finally, you can modify the title and the validation method:

• dlg.set_title newtitle

• dlg.set_validation_proc newvalproc, newcontext

dlg.set_validation_proc (with no argument, remove the procedure)

Fredo6 – LibTraductor.rb Page 13 / 20 v1.0 – 02 November 2007

6) Validation procedure

You have the choice between relying on

• Either the built-in validation mechanism provided by Traductor

• Or your own validation procedure that you specify when creating the dialog box

Note that there is anyway a validation provided by Sketchup itself, on which external

programming has no control. This deals with validation of data type. For instance, if you

enter a string in a field supposed to be numeric, you'll get a message like this one:

Built-in validation mechanism:

The principle is that when the user presses OK, the method will check all parameters

entered by the user against their possible constraints (min, max for numeric, pattern

for string) and display a single message box warning the user with problems. The user

is then taken back to the dialog box, until he enters correct values or press Cancel.

For instance, if you entered some invalid values in the following dialog box….

You will get the following error message

Fredo6 – LibTraductor.rb Page 14 / 20 v1.0 – 02 November 2007

Your own validation procedure

If you pass your own validation procedure, then the built-in validation is bypassed and

instead all current values are passed to the validation procedure, which has the form:

status = my_own_validation_proc dlg, context=nil

The validation procedure can consult the results in dlg.hash_results.

It must return true if it considers the results are valid, or false otherwise. In the latter

case, it is responsible to prompt the user for warning or additional actions.

Note that the validation procedure can alter the value of dlg.hash_results, either to

reset some fields to correct values (if it returns false), or to change the results (if it

returns true). It can also alter any property of the dialog items, as seen above.

For instance, your validation procedure can ask for confirmation on some value, and

validate if the user does confirm.

As an example, let's assume you design your dialog box as:

@dlg2 = Traductor::DialogBox.new STR_Title,
 'LibTraductor_Test.valid2proc', 150

@dlg2.field_enum "Type", STR_Type, 'C', STR_EnumType

@dlg2.field_string "NAME", STR_Name, "totoo", STR_Pattern

@dlg2.field_numeric "NB", STR_Number, 3

@dlg2.field_numeric "SCALE", STR_ScaleFactor, 1.2, 0.5, nil

@dlg2.field_numeric "RADIUS", STR_Radius, 65.cm, nil, 200.cm

With the validation procedure as:
def LibTraductor_Test.valid2proc dlg, context=nil

 val = dlg.hash_results['NB']

 if (val > context)
 status = UI.messagebox (Traductor.s(MSG_CONFIRM2,context), MB_YESNO)

 if (status == 6)
 dlg.hash_results['NB'] = context #cap value to context
 return true
 else
 dlg.hash_results['NB'] = 100 #reset value to maximum 100
 return false
 end

 end

 true
end

When it displays and if you enter the value 200 in the Field 'NB' (Number of objects),

then your validation procedure will prompt the user for confirmation:

Fredo6 – LibTraductor.rb Page 15 / 20 v1.0 – 02 November 2007

If you press 'YES', then the validation will be OK, but the returned value will be

capped at 150:

If you press 'NO', you will take the user back to the dialog box, but with the value now

set to 100 (the values of the other field being unchanged).

This is indeed trickier to program than to rely on the built-in validation procedure, but

this can give you some flexibility.

Note that an alternative method is simply to rely first on whatever you can check with

the built-in validation procedure, and then, when the user press OK, do your own

validation and possibly redisplay the dialog box if there is still a problem.

Fredo6 – LibTraductor.rb Page 16 / 20 v1.0 – 02 November 2007

7) An example of using dialog boxes

I put hereunder a full example of how to code a dialog box illustrating each type of fields.

This is taken from the test script LibTraductor_test.rb which goes along with the macro.

As a first step, you define the constants in the header of your module

STR_Title = ["Test 1 of Traductor Dialog box",

 "|FR| Premier test des boites de dialogue Traductor"]

STR_Type = ["Object Type", "|FR| Definition de l'objet"]

STR_EnumType = { 'R' => "Rectangle |FR| Rectangle",

 'T' => "Triangle |FR| Triangle",

 'C' => "Circle |FR| Cercle" }

STR_Number = ["Number of objects", "|FR| Nombre d'objets"]

STR_ScaleFactor = ["Scale Factor", "|FR| Facteur d'echelle"]

STR_Radius = ["Radius", "|FR| Rayon"]

STR_Name = ["Object name", "|FR| Nom de l'objet"]

STR_Pattern = "/o/ |FR| /a/"

MSG_CANCEL = "User pressed cancel |FR|Sortie de dialogue avec ANNULER"

MSG_OK = "User validated input with OK |FR| Validation des entrees avec OK"

Then you design your dialog box

 unless @dlg

 @dlg = Traductor::DialogBox.new STR_Title

 @dlg.field_string "NAME", STR_Name, "toto"

 @dlg.field_enum ("Type", STR_Type, 'C', STR_EnumType)

 @dlg.field_numeric ("NB", STR_Number, 3, 1, 100)

 @dlg.field_numeric ("SCALE", STR_ScaleFactor, 1.2, 0.5, nil)

 @dlg.field_numeric ("RADIUS", STR_Radius, 65.cm, nil, 200.cm)

 end

Finally you invoke the dialog box

• A first method is to rely on defaults, and just call the method show with no

argument. Then the next time you will call it, it will show the values entered by the

user the previous time.

if (@dlg.show)
 puts "User validated with OK --> #{@dlg.hash_results}"
else
 puts "User pressed cancel"
end

• A second method is to keep a separate control over the input and the output. You

defined the input in a hash array, with all or a subset of the values (the rest will be

taken as default):

. hash_values = {'Type' => 'R'}

 if (@dlg.show hash_values)
 puts "User validated with OK --> #{@dlg.hash_results}"
 else

 puts "User pressed cancel"
end

Fredo6 – LibTraductor.rb Page 17 / 20 v1.0 – 02 November 2007

The variable hash_values is not touched, so that the next time you will call the

dialog box with the same call @dlg.show hash_values, it will show the initial

values, not the latest validated

• A third method is to use the same variable, here hash_array, to pass the input

and get the output:

. hash_array = {'Type' => 'R'}

 if (@dlg.show! hash_array)
 puts "User validated with OK --> #{@hash_array}"
 else
 puts "User pressed cancel"
 end

Note that if the variable hash_array contains other keys that those used by the

dialog box, they will be preserved. This is a way to carry additional parameters in

the same variable.

More generally, you can play with the test macro LibTraductor_test.rb to check the

different behaviors of the dialog box interface.

Fredo6 – LibTraductor.rb Page 18 / 20 v1.0 – 02 November 2007

4. Hash Arrays

Hash Arrays are a very convenient way to represent parameters with an approach [key,

value]. We have seen the benefits about Dialog boxes. However, you cannot directly store

a hash array as an attribute of a Sketchup entity via the Entity.set_attribute verb, because it

is a structured, not a flat string.

LibTraductor provides 3 methods for helping this area
2
:

- hash_marshal: Encode a hash array into a character string (i.e. marshaling)

- hash_unmarshal: Decode a string into a hash array

- hash_pretty: produce a nice string which can be used to display your hash array

1) Marshaling Hash Arrays

str = Traductor.hash_marshal (hash_array)

The encoding is based on a double line feed '\t\t' between each pair (key, value) and

then a double tab i.e. '\t\t' between the key and the value. In addition, types are identified

after the value by a triple tilde '~~~' followed by the type of the variable, either Integer,

Float or Length. So be careful not to have a double line feed, a double tab or a triple tilde

in the keys and values of your hash array. If hash_array is nil, the method returns the

empty string "".

For instance if hsh = {"a" => 23.0cm, "b" => 43.5, "c" => "hello"} then,

Traductor.hash_marshal hsh

���� "a\t\t 9.05511811023622~~~ \n\nb\t\t43.5~~~f\n\nc\t\thello"

Note that the distance 23.0cm has been encoded as inches, 9.05511811023622.

2) Un-marshaling Hash Arrays

hsh = Traductor.hash_unmarshal (str)

This of course works if the string has been previously marshaled by Traductor. Note that

the Sketchup units are preserved in the marshal and un-marshal operations. If str is nil,

the method returns an empty hash array {}.

3) Pretty Print of Hash Arrays

str = Traductor.hash_pretty (hash_array, leadstr=nil)

This method prints the pairs (key, value) one by line, with an optional lead string. For

instance, with the previous hash array.

Traductor.hash_pretty hsh, " -- " will generate

 -- a => 23.0cm

 -- b => 43.5

 -- c => hello

2
 The Ruby methods Marshal::dump and Marshal::load do not work either with Sketchup entity attributes

as the string is encoded in binary form.

Fredo6 – LibTraductor.rb Page 19 / 20 v1.0 – 02 November 2007

4) Usage with Sketchup entities

This main benefit of the Traductor marshaling is to be able to store hash arrays as

attributes of Sketchup entities.

For instance…

entity.set_attribute "dicoskp", "param", Traductor.hash_marshal hsh

….and then

hsh = Traductor.hash_unmarshal (entity.get_attribute "dicoskp", "param")

Fredo6 – LibTraductor.rb Page 20 / 20 v1.0 – 02 November 2007

5. Tracing Code

You may want to log some information to the Ruby console, for instance in case of

programming error, or just as a permanent trace.

In order to help you make a difference between the method puts, and also to support

multi-language, Traductor includes 2 methods, which are actually doing the same thing

but have different names for readability of your code:

def Traductor.log_error (msg, *args)

 puts Traductor[msg, *args]

end

def Traductor.log_info (msg, *args)

 puts Traductor[msg, *args]

end

These two methods supports token replacement (i.e. %1, …, %9)

