
Debuggifier ® User's Guide Version 2.03 February 3, 2012

Introduction

Debuggifier is a computer program that makes it easier to debug a plugin written
in the Ruby language for use with Google Sketchup ® version 8 or above. The
program inserts commands where necessary in the Ruby plugin to call a
debugging tool.

Later, when the “Debuggified” plugin is invoked, the debugging tool shows to the
user a history of code lines, and variable values, and watches, and breakpoints,
that were encountered as the plugin executed. The results are shown in the Ruby
console and are printed in a text file (a „log file‟). The user can set conditional
watches and conditional breakpoints as the session progresses. The user can
examine and set values of variables of the plugin. As as the Ruby plugin
execution progresses, the user can determine where the program goes wrong.
This is program debugging without an IDE. By adding many debugging
commands to the plugin‟s source code, the code thereby is „debuggified‟. After
debugging is complete, the user „Undebuggifies‟ the plugin code automatically.

What Debuggifier can do

Debuggifier can

 Trace through the plugin line by line, showing the original Ruby code lines
and the variable names and their values used in each line.

 Watch selected variables and pause the program when a selected
variable is assigned a value, changes value, or conditionally changes
value. Variables can be added to the „watch list‟ at any breakpoint.

 Break at any code line or method, to allow the user to inspect variables,
set watched variables, set additional breakpoints, and perform other
actions. Breakpoints can be added to the „breakpoint list‟ any time the
program pauses at some other breakpoint.

 List the code lines being debugged

 Save and load filename settings

 Execute the plugin in „Go‟ mode until a watch or breakpoint suspends the
execution

 Abort debugging, letting the plugin run by itself

What Debuggifier cannot do

Debuggifier cannot

 Be an integrated development environment. By the way, we know of no
IDE for Ruby in Sketchup.

 Change code lines

 Prevent Ruby from exiting suddenly (“bug splat”) when it encounters an
error. However, examining the debug output file shows the last successful
statement encountered, therefore determining the offending code.

 Handle complicated Regex expressions well. It usually ignores them.

 Handle uncommon Ruby syntaxes. It usually ignores them.

 Make distinctions for different scopes (bindings) of variables

 Debug more than one plugin file at a time.

Example

Here is a flavor of how it works. A Ruby program (that is, a plugin)
„Face2Face.txt‟ is the „source file‟, and gets run through the Debuggifier.exe
program to insert all the debug routine calls and create the „target file‟
Face2Face.rb. Then Sketchup is invoked to use the preprocessed plugin‟s new
code in the target file. As the code runs, the text of the code lines and the values
of the variables used in the code lines are displayed on the Ruby console, and
are logged to a text file. At breakpoints, an debugger inputbox allows you to
enter debugging commands, and to continue stepping through or jumping
through the code.

Here are some screenshots of a typical debugging cycle.

First, the plugin source file code is run through the preprocessor.

The user clicks the “Debuggify” command button, and then the code in file
Face2Face.txt has all the required debug lines added to it and is written to
Face2Face.rb, as shown here –

Notice that the line count has increased to 3271 due to the added debugging
lines.

Then Sketchup is run on any model, and the new target file Face2Face.rb plugin
is included with all of the plugins that Sketchup reads in (including Debbugifier.rb
which implements the debugging calls). The user invokes the the Face2Face
plugin by whatever mechanism the plugin provides, in this case, by selecting
Sketchup menu items „Plugins‟ and then „Extrude faces‟. The plugin starts
running, and Debuggifier.rb intercepts it, and outputs tons of information to the
Ruby console, and to a log file „DEBUGGIFIER.TXT‟ in the same folder that the
model was located.

Here is a sample of what the Ruby console might show –

And here is a partial
closeup:

Sequence numbers and program line numbers from the modified Face2Face.rb
are shown followed by the text of each code line, then values of the Left Hand
Side (LHS) and Right Hand Side (RHS) of each line if appropriate.

When the plugin encounters its first debug call, the debugger inputbox appears –

Here is where the real usefulness starts. The user can just hit „enter‟ to step
through the code that is after the breakpoint, and keep just hitting the <Enter>
key to continue stepping. Or the user can set more breakpoints or set watches
on any variables by making entries into the „Breakpoints‟ and „Watches‟ boxes.
After doing so, hitting „OK‟ (or the <Enter> key) will allow the plugin to continue.

When the user reaches the code lines or data values of interest, the intended
event occurs wherein the user realizes the source of the problem with the plugin
code. Then the user exits Sketchup and makes the necessary bug fix in the
code Face2Face.rb with the user‟s favorite editor, and the sequence is repeated -

 Run Sketchup on a model, which reads the revised code in the .rb file,
followed by

 Steps and go‟s, inspection of variables at the desired breakpoints and
watches, and in the Ruby console. Read back the log file with an editor if
that will help.

 Make code changes, based on the user‟s new enlightenment, to make the
plugin‟s code work correctly

This will lead to the desired bug fix(es). When the code fixes are made, the user
can „Undebbugify‟ the code using Debuggifier.exe to remove debugging lines and
get back to „clean‟ code.

Debugging slows the execution speed of the plugin being developed. Comment
out most of the debug statements by globally replacing “Debuggifier.dfrMyPrint”
with “#Debuggifier.dfrMyPrint”. Then uncomment these debugging statements
in the areas of the code that you need to debug. This will greatly improve
execution speed.

Preprocessor - insertion of Debuggifier calls

To illustrate by example, the code snippet 1 (a small part of a larger Ruby
program) gets changed by Debuggifier into the code snippet 2. The outputs to
the Ruby console are shown previously.

Code snippet 1- original source code:

$bln_reverse_stub1 = 0

$bln_reverse_stub2 = 0

selection = Sketchup.active_model.selection

Code snippet 2 the Debuggified code:

$bln_reverse_stub1 = 0

 Debuggifier.dfrMyPrint ' 2623 ' + '$bln_reverse_stub1 = 0'

 Debuggifier.dfrMyPrint 'EQ LHS ' $bln_reverse_stub1,'$bln_reverse_stub1'

$bln_reverse_stub2 = 0

 Debuggifier.dfrMyPrint ' 2626 ' + '$bln_reverse_stub2 = 0'

 Debuggifier.dfrMyPrint ' EQ LHS ' ,bln_reverse_stub2,'$bln_reverse_stub2'

selection = Sketchup.active_model.selection

 Debuggifier.dfrMyPrint ' 2629 ' + 'selection = Sketchup.active. . .

 Debuggifier.dfrMyPrint ' EQ LHS ' , selection,'selection'

There are calls to Debuggifier.rb calls after any assignment/if/while/case
statement. The first inserted statement is to print the source code line so the
user can follow the program flow. The subsequent inserted statements show the
values used in the statement evaluation if that is appropriate.

All of your comments (denoted by #) are included in the target file. Sometimes
literals have their singlequote „ or doublequote “ delimiters removed in the
printing of the code line.

Actions

Selections from the action box dropdown list are:

 “Step” runs the plugin to the next of its lines, presumably having a
Debuggifier all after it so it can be paused again.

 “Abort” cancels debugging and lets the plugin run to its completion.

 “Go” lets the plugin run until a breakpoint is reached or a watched variable
is assigned/changed.

 “Save” writes the current watch list and breakpoint list to
“DEBUGGIFIER_SETUP.TXT”, in the folder where the Sketchup model is
found.

 “Load” gets last-saved watch list and breakpoint list.

 “List” lists the code lines N1 through N2 on the Ruby console. N1 is 5
lines previous to the current line. N2 is 5 lines after the current line.

Breakpoints

The debugger will pause and show the debugging inputbox after the relevant
breakpoint line is executed.

Selections from the Breakpoints box dropdown list are:

 Show all – displays currently set breakpoints in a messagebox

 Clear all – deletes all breakpoint settings

 Add – Brings up another inputbox, shown below, to allow the user to
specify a new breakpoint at either a method entry or a plugin code line
number as shown below. The code line numbers are those that are
generated and made part of the debug call in the modified plugin.

 Delete – Brings up another inputbox to remove a breakpoint setting

Watches

The debugger will pause after the any statement with the relevant watched
variable on the left side, if the value of the variable meets the criterion.

Selections from the Watches box dropdown list are:

 Show all – displays currently watched variables and their latest values in a
messagebox

 Clear all – deletes all watches

 Add – Brings up another inputbox, shown below, to allow the user to
specify a new watch as shown below. The possible watch criteria are
“ASSIGNED”, “CHANGED”, “>”, “<”, “==”, and “!=”.

 Delete – Brings up another inputbox to remove a watch

Text comparisons can be made as well as numeric comparisons.

Variables

The debugger stores variable name and value pairs as they are encountered in
the debug statements in the plugin code.

Selections from the Variables box dropdown list are:

 Show all – displays currently known variables in a messagebox. This
number of known variables increases as the plugin code executes more
and more lines.

 Examine – brings up another inputbox asking for the name of the variable.
The variable does not need to be in the variables list yet. The debugger
then tries to get the value associated with the variable name.

 Set – brings up another inputbox asking for the name of the variable. The
variable does not need to be in the variables list yet. The debugger then
tries to set the value associated with the variable name.

Updates

The program continues to be developed. It is written in VB.net. As each new
version of the Debuggifier is released, updates to this manual will also be
released. The current version is a 32-bit application that runs under Microsoft
Windows XP and Windows 7 (most of which are 32-bit versions). It may run well
on other versions of Windows as well but this has not yet been tested.

Installation

1. Determine that your computer has .NET framework 4 or above.

2. Download the Debuggifier zipped package from the website
www.sketchucation.com and unzip it

3. Run …deploy\setup.exe. The installation program will install
Debuggifier.exe wherever you like.

4. If a desktop icon has not been created on your desktop create one and
point it to the newly created DEBUGGIFIER.EXE, wherever you chose to
install it.

5. Doubleclick the icon. You will get the main screen as follows:

The first time that you run Debuggifier, some default filenames appear in the
textboxes, instead of the names shown above. A setup file
(C:\Users\DEBUGGIFIER_SETUP.TXT) keeps track of the user preferences for
path and file names. Change the filenames by typing in the textboxes or using
the Browse buttons.

Source file name textbox

The source file is the Ruby program which is saved as a text file.

http://www.sketchucation.com/

Target file name textbox

The target file is the Ruby program with many print statements added to it for
debugging, i.e., the Debuggified file.

Browse command buttons

The user can use the <Browse> command buttons to navigate to and select the
files. It is not advisable to use the same file names for the source and the
target, but Debuggifier will allow it. It gets very confusing and errors are easy to
make if you do this.

Debuggify command button

This button starts the processing of inserting debug statements and writing the
target file.

Undebuggify command button

This button removes all debug statements from the source file and rewrites the
target file. This is done after the Ruby source file script is debugged and fixed.
Then the source / target file names can be changed in the textboxes, or the
source / target files can be renamed, to remove the debug lines and restore your
fixed source file so it has no more debug lines in it.

Exit command button

This button saves the settings and ends the program, at which time the user
should run Sketchup and start debugging.

Pseudoprofiling

The Debuggifier output file can be used to determine the most-used statemetns
in your program. Drop the log file contents into Excel, then sort on program line
number. Count the number of occurrences of each line. Then sort the counts
from high to low to discover the most-used lines. Nondebuggified lines will not
be counted.

