
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Tue, 05 Feb 2013 17:06:55 UTC

IEE 745 Fkoat

Contents
Articles

Floating point 1
Single-precision floating-point format 23
Significand 27

References
Article Sources and Contributors 29
Image Sources, Licenses and Contributors 30

Article Licenses
License 31

Floating point 1

Floating point

The first programmable computer, the Z3, included
floating point arithmetic (replica on display at

Deutsches Museum in Munich).

A diagram showing a representation of a floating point
number using a mantissa and an exponent.

In computing, floating point describes a method of representing
an approximation to real numbers in a way that can support a wide
range of values. The numbers are, in general, represented
approximately to a fixed number of significant digits (the
mantissa) and scaled using an exponent. The base for the scaling is
normally 2, 10 or 16. The typical number that can be represented
exactly is of the form:

Significant digits × baseexponent

The idea of floating-point representation over intrinsically integer
fixed-point numbers, which consist purely of significand, is that
expanding it with the exponent component achieves greater range.
For instance, to represent large values, e.g. distances between
galaxies, there is no need to keep all 39 decimal places down to
femtometre-resolution, employed in particle physics. Assuming
that the best resolution is in light years, only 9 most significant
decimal digits matter whereas 30 others bear pure noise and, thus,
can be safely dropped. This is 100-bit saving in storage. Instead of
these 100 bits, much fewer are used to represent the scale (the
exponent), e.g. 8 bits or 2 decimal digits. Now, one number can
encode the astronomic and subatomic distances with the same 9
digits of accuracy. But, because 9 digits is 100 times less accurate
than 9+2 digits reserved for scale, this is considered as precision-for-range trade-off. The example also explains that
using scaling to extend the dynamic range results in another contrast with usual fixed-point numbers: their values are
not uniformly spaced. Small values, the ones close to zero, can be represented with much higher resolution (1
femtometre) than distant ones because greater scale (light years) must be selected for encoding significantly larger
values.[1] That is, floating-point cannot represent point coordinates with atomic accuracy in the other galaxy, only
close to the origin.

The term floating point refers to the fact that their radix point (decimal point, or, more commonly in computers,
binary point) can "float"; that is, it can be placed anywhere relative to the significant digits of the number. This
position is indicated as the exponent component in the internal representation, and floating-point can thus be thought
of as a computer realization of scientific notation. Over the years, a variety of floating-point representations have
been used in computers. However, since the 1990s, the most commonly encountered representation is that defined by
the IEEE 754 Standard.
The speed of floating-point operations, commonly referred to in performance measurements as FLOPS, is an
important machine characteristic, especially in software that performs large-scale mathematical calculations.

http://en.wikipedia.org/w/index.php?title=Z3_%28computer%29
http://en.wikipedia.org/w/index.php?title=Deutsches_Museum
http://en.wikipedia.org/w/index.php?title=Munich
http://en.wikipedia.org/w/index.php?title=File%3AZ3_Deutsches_Museum.JPG
http://en.wikipedia.org/w/index.php?title=Exponent
http://en.wikipedia.org/w/index.php?title=File%3AFloat_mantissa_exponent.png
http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Real_number
http://en.wikipedia.org/w/index.php?title=Significant_figures
http://en.wikipedia.org/w/index.php?title=Exponentiation
http://en.wikipedia.org/w/index.php?title=Integer_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Fixed-point_arithmetic
http://en.wikipedia.org/w/index.php?title=Femtometre
http://en.wikipedia.org/w/index.php?title=Light_years
http://en.wikipedia.org/w/index.php?title=Accuracy_and_precision
http://en.wikipedia.org/w/index.php?title=Trade-off
http://en.wikipedia.org/w/index.php?title=Radix_point
http://en.wikipedia.org/w/index.php?title=Scientific_notation
http://en.wikipedia.org/w/index.php?title=IEEE_754
http://en.wikipedia.org/w/index.php?title=FLOPS
http://en.wikipedia.org/w/index.php?title=Software

Floating point 2

Overview
A number representation (called a numeral system in mathematics) specifies some way of storing a number that may
be encoded as a string of digits. The arithmetic is defined as a set of actions on the representation that simulate
classical arithmetic operations.
There are several mechanisms by which strings of digits can represent numbers. In common mathematical notation,
the digit string can be of any length, and the location of the radix point is indicated by placing an explicit "point"
character (dot or comma) there. If the radix point is not specified then it is implicitly assumed to lie at the right (least
significant) end of the string (that is, the number is an integer). In fixed-point systems, some specific assumption is
made about where the radix point is located in the string. For example, the convention could be that the string
consists of 8 decimal digits with the decimal point in the middle, so that "00012345" has a value of 1.2345.
In scientific notation, the given number is scaled by a power of 10 so that it lies within a certain range—typically
between 1 and 10, with the radix point appearing immediately after the first digit. The scaling factor, as a power of
ten, is then indicated separately at the end of the number. For example, the revolution period of Jupiter's moon Io is
152853.5047 seconds, a value that would be represented in standard-form scientific notation as 1.528535047×105

seconds.
Floating-point representation is similar in concept to scientific notation. Logically, a floating-point number consists
of:
• A signed digit string of a given length in a given base (or radix). This digit string is referred to as the significand,

coefficient or, less often, the mantissa (see below). The length of the significand determines the precision to
which numbers can be represented. The radix point position is assumed to always be somewhere within the
significand—often just after or just before the most significant digit, or to the right of the rightmost (least
significant) digit. This article will generally follow the convention that the radix point is just after the most
significant (leftmost) digit.

• A signed integer exponent, also referred to as the characteristic or scale, which modifies the magnitude of the
number.

To derive the value of the floating point number, one must multiply the significand by the base raised to the power
of the exponent, equivalent to shifting the radix point from its implied position by a number of places equal to the
value of the exponent—to the right if the exponent is positive or to the left if the exponent is negative.
Using base-10 (the familiar decimal notation) as an example, the number 152853.5047, which has ten decimal digits
of precision, is represented as the significand 1.528535047 together with an exponent of 5 (if the implied position of
the radix point is after the first most significant digit, here 1). To determine the actual value, a decimal point is
placed after the first digit of the significand and the result is multiplied by 105 to give 1.528535047 × 105, or
152853.5047. In storing such a number, the base (10) need not be stored, since it will be the same for the entire range
of supported numbers, and can thus be inferred.
Symbolically, this final value is

where s is the value of the significand (after taking into account the implied radix point), b is the base, and e is the
exponent.
Equivalently:

where s here means the integer value of the entire significand, ignoring any implied decimal point, and p is the
precision—the number of digits in the significand.
Historically, several number bases have been used for representing floating-point numbers, with base 2 (binary)
being the most common, followed by base 10 (decimal), and other less common varieties, such as base 16

http://en.wikipedia.org/w/index.php?title=Numeral_system
http://en.wikipedia.org/w/index.php?title=Radix_point
http://en.wikipedia.org/w/index.php?title=Decimal_separator
http://en.wikipedia.org/w/index.php?title=Decimal_separator
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=Fixed-point_arithmetic
http://en.wikipedia.org/w/index.php?title=Scientific_notation
http://en.wikipedia.org/w/index.php?title=Exponentiation
http://en.wikipedia.org/w/index.php?title=Jupiter
http://en.wikipedia.org/w/index.php?title=Io_%28moon%29
http://en.wikipedia.org/w/index.php?title=Base_%28exponentiation%29
http://en.wikipedia.org/w/index.php?title=Radix
http://en.wikipedia.org/w/index.php?title=Coefficient
http://en.wikipedia.org/w/index.php?title=Exponent
http://en.wikipedia.org/w/index.php?title=Decimal_representation
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system

Floating point 3

(hexadecimal notation), as well as some exotic ones like 3 (see Setun).
Floating point numbers are rational numbers because they can be represented as one integer divided by another. For
example 1.45×103 is (145/100)*1000 or 145000/100. The base however determines the fractions that can be
represented. For instance, 1/5 cannot be represented exactly as a floating point number using a binary base but can be
represented exactly using a decimal base (0.2, or 2×10−1). However 1/3 cannot be represented exactly by either
binary (0.010101...) nor decimal (0.333....), but in base 3 it is trivial (0.1 or 1×3−1) . The occasions on which infinite
expansions occur depend on the base and its prime factors, as described in the article on Positional Notation.
The way in which the significand, exponent and sign bits are internally stored on a computer is
implementation-dependent. The common IEEE formats are described in detail later and elsewhere, but as an
example, in the binary single-precision (32-bit) floating-point representation p=24 and so the significand is a string
of 24 bits. For instance, the number π's first 33 bits are 11001001 00001111 11011010 10100010 0. Rounding to 24
bits in binary mode means attributing the 24th bit the value of the 25th which yields 11001001 00001111 11011011.
When this is stored using the IEEE 754 encoding, this becomes the significand s with e = 1 (where s is assumed to
have a binary point to the right of the first bit) after a left-adjustment (or normalization) during which leading or
trailing zeros are truncated should there be any. Note that they do not matter anyway. Then since the first bit of a
non-zero binary significand is always 1 it need not be stored, giving an extra bit of precision. To calculate π the
formula is

where n is the normalized significand's n-th bit from the left. Normalization, which is reversed when 1 is being added
above, can be thought of as a form of compression; it allows a binary significand to be compressed into a field one
bit shorter than the maximum precision, at the expense of extra processing.
The word "mantissa" is often used as a synonym for significand. Use of mantissa in place of significand or
coefficient is discouraged, as the mantissa is traditionally defined as the fractional part of a logarithm, while the
characteristic is the integer part. This terminology comes from the manner in which logarithm tables were used
before computers became commonplace. Log tables were actually tables of mantissas.

Some other computer representations for non-integral numbers
Floating-point representation, in particular the standard IEEE format, is by far the most common way of representing
an approximation to real numbers in computers because it is efficiently handled in most large computer processors.
However, there are alternatives:
• Fixed-point representation uses integer hardware operations controlled by a software implementation of a specific

convention about the location of the binary or decimal point, for example, 6 bits or digits from the right. The
hardware to manipulate these representations is less costly than floating-point and is also commonly used to
perform integer operations. Binary fixed point is usually used in special-purpose applications on embedded
processors that can only do integer arithmetic, but decimal fixed point is common in commercial applications.

• Binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is represented by its own
binary sequence. It is possible to implement a floating point system with BCD encoding.

• Logarithmic number systems represent a real number by the logarithm of its absolute value and a sign bit. The
value distribution is similar to floating-point, but the value-to-representation curve, i. e. the graph of the logarithm
function, is smooth (except at 0). Contrary to floating-point arithmetic, in a logarithmic number system
multiplication, division and exponentiation are easy to implement but addition and subtraction are difficult. The
level index arithmetic of Clenshaw, Olver, and Turner is a scheme based on a generalised logarithm

http://en.wikipedia.org/w/index.php?title=Hexadecimal
http://en.wikipedia.org/w/index.php?title=Setun
http://en.wikipedia.org/w/index.php?title=Rational_number
http://en.wikipedia.org/w/index.php?title=Ternary_numeral_system
http://en.wikipedia.org/w/index.php?title=Prime_factors
http://en.wikipedia.org/w/index.php?title=Positional_notation%23Infinite_representations
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Pi
http://en.wikipedia.org/w/index.php?title=Common_logarithm
http://en.wikipedia.org/w/index.php?title=Fixed-point_arithmetic
http://en.wikipedia.org/w/index.php?title=Binary-coded_decimal
http://en.wikipedia.org/w/index.php?title=Logarithmic_number_system
http://en.wikipedia.org/w/index.php?title=Symmetric_level-index_arithmetic

Floating point 4

representation.
• Where greater precision is desired, floating-point arithmetic can be implemented (typically in software) with

variable-length significands (and sometimes exponents) that are sized depending on actual need and depending on
how the calculation proceeds. This is called arbitrary-precision floating point arithmetic.

• Some numbers (e.g., 1/3 and 1/10) cannot be represented exactly in binary floating-point, no matter what the
precision is. Software packages that perform rational arithmetic represent numbers as fractions with integral
numerator and denominator, and can therefore represent any rational number exactly. Such packages generally
need to use "bignum" arithmetic for the individual integers.

• Computer algebra systems such as Mathematica and Maxima can often handle irrational numbers like or
in a completely "formal" way, without dealing with a specific encoding of the significand. Such programs can
evaluate expressions like " " exactly, because they "know" the underlying mathematics.

Range of floating-point numbers
Floating point number consists of two fixed-point components, whose range depends exclusively on the number of
bits or digits in their representation. Whereas components linearly depend on their range, the floating point range
linearly depends on the significant range and exponentially on the range of exponent component, which attaches
outstandingly wider range to the number.
On a typical computer system, a 'double precision' (64-bit) binary floating-point number has a coefficient of 53 bits
(one of which is implied), an exponent of 11 bits, and one sign bit. Positive floating-point numbers in this format
have an approximate range of 10−308 to 10308, because the range of the exponent is [−1022,1023] and 308 is
approximately log10(21023). The complete range of the format is from about −10308 through +10308 (see IEEE 754).
The number of normalized floating point numbers in a system F (B, P, L, U) (where B is the base of the system, P is
the precision of the system to P numbers, L is the smallest exponent representable in the system, and U is the largest
exponent used in the system) is: .
There is a smallest positive normalized floating-point number, Underflow level = UFL = which has a 1 as the
leading digit and 0 for the remaining digits of the significand, and the smallest possible value for the exponent.
There is a largest floating point number, Overflow level = OFL = which has B − 1 as the
value for each digit of the significand and the largest possible value for the exponent.
In addition there are representable values strictly between −UFL and UFL. Namely, zero and negative zero, as well
as denormalized numbers.

http://en.wikipedia.org/w/index.php?title=Arbitrary-precision_arithmetic
http://en.wikipedia.org/w/index.php?title=Fraction_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Bignum
http://en.wikipedia.org/w/index.php?title=Computer_algebra_system
http://en.wikipedia.org/w/index.php?title=Mathematica
http://en.wikipedia.org/w/index.php?title=Maxima_%28software%29
http://en.wikipedia.org/w/index.php?title=Fixed-point_arithmetic
http://en.wikipedia.org/w/index.php?title=IEEE_754
http://en.wikipedia.org/w/index.php?title=Denormal_numbers

Floating point 5

History

Leonardo Torres y Quevedo, in 1914 published
an analysis of floating point based on the analytic

engine.

Leonardo Torres y Quevedo in 1914 designed an electro-mechanical
version of the Analytical Engine of Charles Babbage which included
floating-point arithmetic.[2] In 1938, Konrad Zuse of Berlin completed
the Z1, the first mechanical binary programmable computer, this was
however unreliable in operation.[3] It worked with 22-bit binary
floating-point numbers having a 7-bit signed exponent, a 15-bit
significand (including one implicit bit), and a sign bit. The memory
used sliding metal parts to store 64 words of such numbers. The
relay-based Z3, completed in 1941 had representations for plus and
minus infinity. It implemented defined operations with infinity such as
1/∞ = 0 and stopped on undefined operations like 0×∞. It also
implemented the square root operation in hardware.

Konrad Zuse, architect of the first programmable computer,
which used 22-bit binary floating point.

Zuse also proposed, but did not complete, carefully rounded
floating–point arithmetic that would have included ±∞ and
NaNs, anticipating features of IEEE Standard floating–point
by four decades.[4] By contrast, von Neumann recommended
against floating point for the 1951 IAS machine, arguing that
fixed point arithmetic was preferable.[5]

The first commercial computer with floating point hardware
was Zuse's Z4 computer designed in 1942–1945. The Bell
Laboratories Mark V computer implemented decimal floating
point in 1946.[6]

The Pilot ACE had binary floating point arithmetic which
became operational at National Physical Laboratory, UK in
1950. A total of 33 were later sold commercially as the
English Electric DEUCE. The arithmetic was actually
implemented as subroutines, but with a one megahertz clock
rate, the speed of floating point operations and fixed point was
initially faster than many competing computers, and since it
was only software, all the DEUCE's had it.

The mass-produced vacuum tube-based IBM 704 followed in
1954; it introduced the use of a biased exponent. For many
decades after that, floating-point hardware was typically an optional feature, and computers that had it were said to
be "scientific computers", or to have "scientific computing" capability. It was not until the launch of the Intel i486 in
1989 that general-purpose personal computers had floating point capability in hardware as standard.

The UNIVAC 1100/2200 series, introduced in 1962, supported two floating-point formats. Single precision used 36
bits, organized into a 1-bit sign, an 8-bit exponent, and a 27-bit significand. Double precision used 72 bits organized

http://en.wikipedia.org/w/index.php?title=Leonardo_Torres_y_Quevedo
http://en.wikipedia.org/w/index.php?title=Analytic_engine
http://en.wikipedia.org/w/index.php?title=Analytic_engine
http://en.wikipedia.org/w/index.php?title=File%3ALeonardo_Torres_Quevedo.jpg
http://en.wikipedia.org/w/index.php?title=Leonardo_Torres_y_Quevedo
http://en.wikipedia.org/w/index.php?title=Analytical_Engine
http://en.wikipedia.org/w/index.php?title=Charles_Babbage
http://en.wikipedia.org/w/index.php?title=Konrad_Zuse
http://en.wikipedia.org/w/index.php?title=Z1_%28computer%29
http://en.wikipedia.org/w/index.php?title=Relay
http://en.wikipedia.org/w/index.php?title=Z3_%28computer%29
http://en.wikipedia.org/w/index.php?title=Konrad_Zuse
http://en.wikipedia.org/w/index.php?title=File%3AKonrad_Zuse_%281992%29.jpg
http://en.wikipedia.org/w/index.php?title=John_von_Neumann
http://en.wikipedia.org/w/index.php?title=IAS_machine
http://en.wikipedia.org/w/index.php?title=Z4_%28computer%29
http://en.wikipedia.org/w/index.php?title=Pilot_ACE
http://en.wikipedia.org/w/index.php?title=National_Physical_Laboratory%2C_UK
http://en.wikipedia.org/w/index.php?title=English_Electric_DEUCE
http://en.wikipedia.org/w/index.php?title=Vacuum_tube
http://en.wikipedia.org/w/index.php?title=IBM_704
http://en.wikipedia.org/w/index.php?title=Exponent_bias
http://en.wikipedia.org/w/index.php?title=UNIVAC_1100/2200_series

Floating point 6

as a 1-bit sign, an 11-bit exponent, and a 60-bit significand. The IBM 7094, introduced the same year, also supported
single and double precision, with slightly different formats.
Prior to the IEEE-754 standard, computers used many different forms of floating-point. These differed in the word
sizes, the format of the representations, and the rounding behavior of operations. These differing systems
implemented different parts of the arithmetic in hardware and software, with varying accuracy.
The IEEE-754 standard was created in the early 1980s after word sizes of 32 bits (or 16 or 64) had been generally
settled upon. This was based on a proposal from Intel who were designing the i8087 numerical coprocessor. Prof. W.
Kahan was the primary architect behind this proposal, along with his student Jerome Coonen at U.C. Berkeley and
visiting Prof. Harold Stone, for which he was awarding the 1989 Turing award.[7] Among the innovations are these:
•• A precisely specified encoding of the bits, so that all compliant computers would interpret bit patterns the same

way. This made it possible to transfer floating-point numbers from one computer to another.
•• A precisely specified behavior of the arithmetic operations: arithmetic operations were required to be correctly

rounded, i.e. to give the same result as if infinitely precise arithmetic was used and then rounded. This meant that
a given program, with given data, would always produce the same result on any compliant computer. This helped
reduce the almost mystical reputation that floating-point computation had for seemingly nondeterministic
behavior.

•• The ability of exceptional conditions (overflow, divide by zero, etc.) to propagate through a computation in a
benign manner and be handled by the software in a controlled way.

IEEE 754: floating point in modern computers
The IEEE has standardized the computer representation for binary floating-point numbers in IEEE 754 (aka. IEC
60559). This standard is followed by almost all modern machines. Notable exceptions include IBM mainframes,
which support IBM's own format (in addition to the IEEE 754 binary and decimal formats), and Cray vector
machines, where the T90 series had an IEEE version, but the SV1 still uses Cray floating-point format.
The standard provides for many closely related formats, differing in only a few details. Five of these formats are
called basic formats and others are termed extended formats, and three of these are especially widely used in
computer hardware and languages:
• Single precision, called "float" in the C language family, and "real" or "real*4" in Fortran. This is a binary format

that occupies 32 bits (4 bytes) and its significand has a precision of 24 bits (about 7 decimal digits).
• Double precision, called "double" in the C language family, and "double precision" or "real*8" in Fortran. This is

a binary format that occupies 64 bits (8 bytes) and its significand has a precision of 53 bits (about 16 decimal
digits).

• Double extended format, 80-bit floating point value. This is implemented on most personal computers but not on
other devices. Sometimes "long double" is used for this in the C language family (the C99 and C11 standards
"IEC 60559 floating-point arithmetic extension- Annex F" recommend the 80-bit extended format to be provided
as "long double" when available), though "long double" may be a synonym for "double" or may stand for
quadruple precision. Extended precision can help minimise accumulation of round-off error in intermediate
calculations.[8]

Less common IEEE formats include:
• Quadruple precision (binary128). This is a binary format that occupies 128 bits (16 bytes) and its significand has

a precision of 113 bits (about 34 decimal digits).
• Double precision (decimal64) and quadruple precision (decimal128) decimal floating point formats. These

formats, along with the single precision (decimal32) format, are intended for performing decimal rounding
correctly.

• Half, also called float16, a 16-bit floating point value.

http://en.wikipedia.org/w/index.php?title=IBM_7094
http://en.wikipedia.org/w/index.php?title=IEEE-754
http://en.wikipedia.org/w/index.php?title=Intel_8087
http://en.wikipedia.org/w/index.php?title=William_Kahan
http://en.wikipedia.org/w/index.php?title=William_Kahan
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=IEEE_floating_point
http://en.wikipedia.org/w/index.php?title=IBM_Floating_Point_Architecture
http://en.wikipedia.org/w/index.php?title=Cray
http://en.wikipedia.org/w/index.php?title=Cray_T90
http://en.wikipedia.org/w/index.php?title=Cray_SV1
http://en.wikipedia.org/w/index.php?title=Single_precision
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=Double_precision
http://en.wikipedia.org/w/index.php?title=Extended_precision
http://en.wikipedia.org/w/index.php?title=Long_double
http://en.wikipedia.org/w/index.php?title=C99
http://en.wikipedia.org/w/index.php?title=C11_%28C_standard_revision%29
http://en.wikipedia.org/w/index.php?title=Round-off_error
http://en.wikipedia.org/w/index.php?title=Quadruple_precision
http://en.wikipedia.org/w/index.php?title=Decimal64_floating-point_format
http://en.wikipedia.org/w/index.php?title=Decimal128_floating-point_format
http://en.wikipedia.org/w/index.php?title=Decimal32_floating-point_format
http://en.wikipedia.org/w/index.php?title=Half_precision

Floating point 7

Any integer with absolute value less than or equal to 224 can be exactly represented in the single precision format,
and any integer with absolute value less than or equal to 253 can be exactly represented in the double precision
format. Furthermore, a wide range of powers of 2 times such a number can be represented. These properties are
sometimes used for purely integer data, to get 53-bit integers on platforms that have double precision floats but only
32-bit integers.
The standard specifies some special values, and their representation: positive infinity (+∞), negative infinity (−∞), a
negative zero (−0) distinct from ordinary ("positive") zero, and "not a number" values (NaNs).
Comparison of floating-point numbers, as defined by the IEEE standard, is a bit different from usual integer
comparison. Negative and positive zero compare equal, and every NaN compares unequal to every value, including
itself. All values except NaN are strictly smaller than +∞ and strictly greater than −∞. Finite floating-point numbers
are ordered in the same way as their values (in the set of real numbers).
To a rough approximation, the bit representation of an IEEE binary floating-point number is proportional to its base
2 logarithm, with an average error of about 3%. (This is because the exponent field is in the more significant part of
the datum.) This can be exploited in some applications, such as volume ramping in digital sound processing.
A project for revising the IEEE 754 standard was started in 2000 (see IEEE 754 revision); it was completed and
approved in June 2008. It includes decimal floating-point formats and a 16 bit floating point format ("binary16").
binary16 has the same structure and rules as the older formats, with 1 sign bit, 5 exponent bits and 10 trailing
significand bits. It is being used in the NVIDIA Cg graphics language, and in the openEXR standard.[9]

Internal representation
Floating-point numbers are typically packed into a computer datum as the sign bit, the exponent field, and the
significand (mantissa), from left to right. For the IEEE 754 binary formats (basic and extended) which have extant
hardware implementations, they are apportioned as follows:

Type Sign Exponent Significand Total bits Exponent bias Bits precision Number of decimal digits

Half (IEEE 754-2008) 1 5 10 16 15 11 ~3.3

Single 1 8 23 32 127 24 ~7.2

Double 1 11 52 64 1023 53 ~15.9

Double extended (80-bit) 1 15 64 80 16383 64 ~19.2

Quad 1 15 112 128 16383 113 ~34.0

While the exponent can be positive or negative, in binary formats it is stored as an unsigned number that has a fixed
"bias" added to it. Values of all 0s in this field are reserved for the zeros and subnormal numbers, values of all 1s are
reserved for the infinities and NaNs. The exponent range for normalized numbers is [−126, 127] for single precision,
[−1022, 1023] for double, or [−16382, 16383] for quad. Normalised numbers exclude subnormal values, zeros,
infinities, and NaNs.
In the IEEE binary interchange formats the leading 1 bit of a normalized significand is not actually stored in the
computer datum. It is called the "hidden" or "implicit" bit. Because of this, single precision format actually has a
significand with 24 bits of precision, double precision format has 53, and quad has 113.
For example, it was shown above that π, rounded to 24 bits of precision, has:
• sign = 0 ; e = 1 ; s = 110010010000111111011011 (including the hidden bit)
The sum of the exponent bias (127) and the exponent (1) is 128, so this is represented in single precision format as
• 0 10000000 10010010000111111011011 (excluding the hidden bit) = 40490FDB[10] as a hexadecimal number.

http://en.wikipedia.org/w/index.php?title=Infinity
http://en.wikipedia.org/w/index.php?title=Negative_zero
http://en.wikipedia.org/w/index.php?title=NaN
http://en.wikipedia.org/w/index.php?title=IEEE_754_revision
http://en.wikipedia.org/w/index.php?title=Cg_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Half_precision
http://en.wikipedia.org/w/index.php?title=IEEE_floating_point
http://en.wikipedia.org/w/index.php?title=Single_precision
http://en.wikipedia.org/w/index.php?title=Double_precision
http://en.wikipedia.org/w/index.php?title=Extended_precision
http://en.wikipedia.org/w/index.php?title=Quad_precision
http://en.wikipedia.org/w/index.php?title=Subnormal_numbers
http://en.wikipedia.org/w/index.php?title=Hexadecimal

Floating point 8

Special values

Signed zero

In the IEEE 754 standard, zero is signed, meaning that there exist both a "positive zero" (+0) and a "negative zero"
(−0). In most run-time environments, positive zero is usually printed as "0", while negative zero may be printed as
"-0". The two values behave as equal in numerical comparisons, but some operations return different results for +0
and −0. For instance, 1/(−0) returns negative infinity (exactly), while 1/+0 returns positive infinity (exactly) (so that
the identity 1/(1/±∞) = ±∞ is maintained). A sign symmetric arccot operation will give different results for +0 and
−0 without any exception. The difference between +0 and −0 is mostly noticeable for complex operations at
so-called branch cuts.

Subnormal numbers

Subnormal values fill the underflow gap with values where the absolute distance between them are the same as for
adjacent values just outside of the underflow gap. This is an improvement over the older practice to just have zero in
the underflow gap, and where underflowing results were replaced by zero (flush to zero).
Modern floating point hardware usually handles subnormal values (as well as normal values), and does not require
software emulation for subnormals.

Infinities

The infinities of the extended real number line can be represented in IEEE floating point datatypes, just like ordinary
floating point values like 1, 1.5 etc. They are not error values in any way, though they are often (but not always, as it
depends on the rounding) used as replacement values when there is an overflow. Upon a divide by zero exception, a
positive or negative infinity is returned as an exact result. An infinity can also be introduced as a numeral (like C's
"INFINITY" macro, or "∞" if the programming language allows that syntax).
IEEE 754 requires infinities to be handled in a reasonable way, such as
• (+∞) + (+7) = (+∞)
• (+∞) × (−2) = (−∞)
• (+∞) × 0 = NaN – there is no meaningful thing to do

NaNs

IEEE 754 specifies a special value called "Not a Number" (NaN) to be returned as the result of certain "invalid"
operations, such as 0/0, ∞×0, or sqrt(−1). In general, NaNs will be propagated i.e. most operations involving a NaN
will result in a NaN, although functions that would give some defined result for any given floating point value will
do so for NaNs as well, e.g. NaN ^ 0 == 1. There are two kinds of NaNs: the default quiet NaNs and, optionally,
signaling NaNs. A signaling NaN in any arithmetic operation (including numerical comparisons) will cause an
"invalid" exception to be signalled.
The representation of NaNs specified by the standard has some unspecified bits that could be used to encode the type
or source of error; but there is no standard for that encoding. In theory, signaling NaNs could be used by a runtime
system to flag uninitialised variables, or extend the floating-point numbers with other special values without slowing
down the computations with ordinary values, although such extensions are not common.

http://en.wikipedia.org/w/index.php?title=Run-time_environment
http://en.wikipedia.org/w/index.php?title=Branch_cut
http://en.wikipedia.org/w/index.php?title=Arithmetic_underflow
http://en.wikipedia.org/w/index.php?title=Extended_real_number_line
http://en.wikipedia.org/w/index.php?title=Arithmetic_overflow
http://en.wikipedia.org/w/index.php?title=Exception_%28computing%29
http://en.wikipedia.org/w/index.php?title=Runtime_system
http://en.wikipedia.org/w/index.php?title=Runtime_system

Floating point 9

IEEE 754 design rationale

William Kahan. A primary architect of the Intel
80x87 floating point coprocessor and IEEE 754

floating point standard.

It is a common misconception that the more esoteric features of the
IEEE 754 standard discussed here, such as extended formats, NaN,
infinities, subnormals etc., are only of interest to numerical analysts, or
for advanced numerical applications; in fact the opposite is true: these
features are designed to give safe robust defaults for numerically
unsophisticated programmers, in addition to supporting sophisticated
numerical libraries by experts. The key designer of IEEE 754, Prof. W.
Kahan notes that it is incorrect to "... [deem] features of IEEE Standard
754 for Binary Floating- Point Arithmetic that ...[are] not appreciated
to be features usable by none but numerical experts. The facts are quite
the opposite. In 1977 those features were designed into the Intel 8087
to serve the widest possible market... . Error-analysis tells us how to
design floating-point arithmetic, like IEEE Standard 754, moderately tolerant of well-meaning ignorance among
programmers".[11]

• The special values such as infinity and NaN ensure that the floating point arithmetic is algebraically completed,
such that every floating point operation produces a well-defined result and will not by default throw a machine
interrupt or trap. Moreover, the choices of special values returned in exceptional cases were designed to give the
correct answer in many cases, e.g. continued fractions such as R(z) := 7 − 3/(z − 2 − 1/(z − 7 + 10/(z − 2 − 2/(z −
3)))) will give the correct answer in all inputs under IEEE-754 arithmetic as the potential divide by zero in e.g.
R(3)=4.6 is correctly handled as +infinity and so can be safely ignored.[12] As noted by Kahan, the unhandled
floating point overflow exception that caused the loss of an Ariane 5 rocket would not have happened under IEEE
754 floating point.[11]

• Subnormal numbers ensure that x - y == 0 if and only if x == y, as expected, but which did not hold under earlier
floating point representations.[13]

• On the design rationale of the x87 80-bit format, Prof. Kahan notes: "This Extended format is designed to be
used, with negligible loss of speed, for all but the simplest arithmetic with float and double operands. For
example, it should be used for scratch variables in loops that implement recurrences like polynomial evaluation,
scalar products, partial and continued fractions. It often averts premature Over/Underflow or severe local
cancellation that can spoil simple algorithms.[14] Computing intermediate results in an extended format with high
precision and extended exponent has precedents in the historical practice of scientific calculation and in the
design of scientific calculators e.g. Hewlett- Packard’s financial calculators performed arithmetic and financial
functions to three more significant decimals than they stored or displayed.[14] The implementation of extended
precision enabled standard elementary function libraries to be readily developed that normally gave double
precision results within one unit in the last place (ULP) at high speed.

•• Correct rounding of values to the nearest representable value avoids systematic biases in calculations and slows
the growth of errors. Rounding ties to even removes the statistical bias that can occur in adding similar figures.

•• Directed rounding was intended as an aid with checking error bounds, for instance in interval arithmetic. It is also
used in the implementation of some functions.

•• The mathematical basis of the operations enabled high precision multiword arithmetic subroutines to be built
relatively easily.

•• The single and double precision formats were designed to be easy to sort without using floating point hardware.

http://en.wikipedia.org/w/index.php?title=William_Kahan
http://en.wikipedia.org/w/index.php?title=80x87
http://en.wikipedia.org/w/index.php?title=IEEE_754
http://en.wikipedia.org/w/index.php?title=File%3AWilliam_Kahan.jpg
http://en.wikipedia.org/w/index.php?title=Numerical_analysis
http://en.wikipedia.org/w/index.php?title=William_Kahan
http://en.wikipedia.org/w/index.php?title=William_Kahan
http://en.wikipedia.org/w/index.php?title=Cluster_%28spacecraft%29
http://en.wikipedia.org/w/index.php?title=Extended_precision
http://en.wikipedia.org/w/index.php?title=Significant_figures%23Arithmetic
http://en.wikipedia.org/w/index.php?title=Unit_in_the_last_place

Floating point 10

Representable numbers, conversion and rounding
By their nature, all numbers expressed in floating-point format are rational numbers with a terminating expansion in
the relevant base (for example, a terminating decimal expansion in base-10, or a terminating binary expansion in
base-2). Irrational numbers, such as π or √2, or non-terminating rational numbers, must be approximated. The
number of digits (or bits) of precision also limits the set of rational numbers that can be represented exactly. For
example, the number 123456789 cannot be exactly represented if only eight decimal digits of precision are available.
When a number is represented in some format (such as a character string) which is not a native floating-point
representation supported in a computer implementation, then it will require a conversion before it can be used in that
implementation. If the number can be represented exactly in the floating-point format then the conversion is exact. If
there is not an exact representation then the conversion requires a choice of which floating-point number to use to
represent the original value. The representation chosen will have a different value to the original, and the value thus
adjusted is called the rounded value.
Whether or not a rational number has a terminating expansion depends on the base. For example, in base-10 the
number 1/2 has a terminating expansion (0.5) while the number 1/3 does not (0.333...). In base-2 only rationals with
denominators that are powers of 2 (such as 1/2 or 3/16) are terminating. Any rational with a denominator that has a
prime factor other than 2 will have an infinite binary expansion. This means that numbers which appear to be short
and exact when written in decimal format may need to be approximated when converted to binary floating-point. For
example, the decimal number 0.1 is not representable in binary floating-point of any finite precision; the exact binary
representation would have a "1100" sequence continuing endlessly:

e = −4; s = 1100110011001100110011001100110011...,
where, as previously, s is the significand and e is the exponent.
When rounded to 24 bits this becomes

e = −4; s = 110011001100110011001101,
which is actually 0.100000001490116119384765625 in decimal.
As a further example, the real number π, represented in binary as an infinite series of bits is

11.0010010000111111011010101000100010000101101000110000100011010011...
but is

11.0010010000111111011011
when approximated by rounding to a precision of 24 bits.
In binary single-precision floating-point, this is represented as s = 1.10010010000111111011011 with e = 1. This has
a decimal value of

3.1415927410125732421875,
whereas a more accurate approximation of the true value of π is

3.14159265358979323846264338327950...
The result of rounding differs from the true value by about 0.03 parts per million, and matches the decimal
representation of π in the first 7 digits. The difference is the discretization error and is limited by the machine
epsilon.
The arithmetical difference between two consecutive representable floating-point numbers which have the same
exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the
representable numbers 1.45a70c22hex and 1.45a70c24hex, the ULP is 2×16−8, or 2−31. For numbers with a base-2
exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly
2−23 or about 10−7 in single precision, and exactly 2−53 or about 10−16 in double precision. The mandated behavior of
IEEE-compliant hardware is that the result be within one-half of a ULP.

http://en.wikipedia.org/w/index.php?title=Rational_number
http://en.wikipedia.org/w/index.php?title=Pi
http://en.wikipedia.org/w/index.php?title=Pi
http://en.wikipedia.org/w/index.php?title=Rounding
http://en.wikipedia.org/w/index.php?title=Discretization_error
http://en.wikipedia.org/w/index.php?title=Machine_epsilon
http://en.wikipedia.org/w/index.php?title=Machine_epsilon
http://en.wikipedia.org/w/index.php?title=Unit_in_the_last_place

Floating point 11

Rounding modes
Rounding is used when the exact result of a floating-point operation (or a conversion to floating-point format) would
need more digits than there are digits in the significand. IEEE 754 requires correct rounding: that is, the rounded
result is as if infinitely precise arithmetic was used to compute the value and then rounded (although in
implementation only three extra bits are needed to ensure this). There are several different rounding schemes (or
rounding modes). Historically, truncation was the typical approach. Since the introduction of IEEE 754, the default
method (round to nearest, ties to even, sometimes called Banker's Rounding) is more commonly used. This method
rounds the ideal (infinitely precise) result of an arithmetic operation to the nearest representable value, and gives that
representation as the result.[15] In the case of a tie, the value that would make the significand end in an even digit is
chosen. The IEEE 754 standard requires the same rounding to be applied to all fundamental algebraic operations,
including square root and conversions, when there is a numeric (non-NaN) result. It means that the results of IEEE
754 operations are completely determined in all bits of the result, except for the representation of NaNs. ("Library"
functions such as cosine and log are not mandated.)
Alternative rounding options are also available. IEEE 754 specifies the following rounding modes:
•• round to nearest, where ties round to the nearest even digit in the required position (the default and by far the most

common mode)
•• round to nearest, where ties round away from zero (optional for binary floating-point and commonly used in

decimal)
• round up (toward +∞; negative results thus round toward zero)
• round down (toward −∞; negative results thus round away from zero)
• round toward zero (truncation; it is similar to the common behavior of float-to-integer conversions, which convert

−3.9 to −3 and 3.9 to 3)
Alternative modes are useful when the amount of error being introduced must be bounded. Applications that require
a bounded error are multi-precision floating-point, and interval arithmetic. The alternative rounding modes are also
useful in diagnosing numerical instability: if the results of a subroutine vary substantially between rounding to + and
- infinity then it is likely numerically unstable and affected by round-off error.[16] A further use of rounding is when
a number is explicitly rounded to a certain number of decimal (or binary) places, as when rounding a result to euros
and cents (two decimal places).

Floating-point arithmetic operations
For ease of presentation and understanding, decimal radix with 7 digit precision will be used in the examples, as in
the IEEE 754 decimal32 format. The fundamental principles are the same in any radix or precision, except that
normalization is optional (it does not affect the numerical value of the result). Here, s denotes the significand and e
denotes the exponent.

Addition and subtraction
A simple method to add floating-point numbers is to first represent them with the same exponent. In the example
below, the second number is shifted right by three digits, and we then proceed with the usual addition method:

 123456.7 = 1.234567 × 10^5

 101.7654 = 1.017654 × 10^2 = 0.001017654 × 10^5

 Hence:

 123456.7 + 101.7654 = (1.234567 × 10^5) + (1.017654 × 10^2)

 = (1.234567 × 10^5) + (0.001017654 × 10^5)

 = (1.234567 + 0.001017654) × 10^5

 = 1.235584654 × 10^5

http://en.wikipedia.org/w/index.php?title=Rounding
http://en.wikipedia.org/w/index.php?title=Truncation
http://en.wikipedia.org/w/index.php?title=Rounding
http://en.wikipedia.org/w/index.php?title=Interval_arithmetic
http://en.wikipedia.org/w/index.php?title=Radix
http://en.wikipedia.org/w/index.php?title=Radix

Floating point 12

In detail:

 e=5; s=1.234567 (123456.7)

+ e=2; s=1.017654 (101.7654)

 e=5; s=1.234567

+ e=5; s=0.001017654 (after shifting)

 e=5; s=1.235584654 (true sum: 123558.4654)

This is the true result, the exact sum of the operands. It will be rounded to seven digits and then normalized if
necessary. The final result is

 e=5; s=1.235585 (final sum: 123558.5)

Note that the low 3 digits of the second operand (654) are essentially lost. This is round-off error. In extreme cases,
the sum of two non-zero numbers may be equal to one of them:

 e=5; s=1.234567

+ e=−3; s=9.876543

 e=5; s=1.234567

+ e=5; s=0.00000009876543 (after shifting)

 e=5; s=1.23456709876543 (true sum)

 e=5; s=1.234567 (after rounding/normalization)

Note that in the above conceptual examples it would appear that a large number of extra digits would need to be
provided by the adder to ensure correct rounding: in fact for binary addition or subtraction using careful
implementation techniques only two extra guard bits and one extra sticky bit need to be carried beyond the precision
of the operands.[17]

Another problem of loss of significance occurs when two close numbers are subtracted. In the following example
e = 5; s = 1.234571 and e = 5; s = 1.234567 are representations of the rationals 123457.1467 and 123456.659.

 e=5; s=1.234571

− e=5; s=1.234567

 e=5; s=0.000004

 e=−1; s=4.000000 (after rounding/normalization)

The best representation of this difference is e = −1; s = 4.877000, which differs more than 20% from e = −1;
s = 4.000000. In extreme cases, all significant digits of precision can be lost (although gradual underflow ensures
that the result will not be zero unless the two operands were equal). This cancellation illustrates the danger in
assuming that all of the digits of a computed result are meaningful. Dealing with the consequences of these errors is
a topic in numerical analysis; see also Accuracy problems.

http://en.wikipedia.org/w/index.php?title=Round-off_error
http://en.wikipedia.org/w/index.php?title=Loss_of_significance
http://en.wikipedia.org/w/index.php?title=Numerical_analysis

Floating point 13

Multiplication and division
To multiply, the significands are multiplied while the exponents are added, and the result is rounded and normalized.

 e=3; s=4.734612

× e=5; s=5.417242

 e=8; s=25.648538980104 (true product)

 e=8; s=25.64854 (after rounding)

 e=9; s=2.564854 (after normalization)

Similarly, division is accomplished by subtracting the divisor's exponent from the dividend's exponent, and dividing
the dividend's significand by the divisor's significand.
There are no cancellation or absorption problems with multiplication or division, though small errors may
accumulate as operations are performed in succession.[18] In practice, the way these operations are carried out in
digital logic can be quite complex (see Booth's multiplication algorithm and Division algorithm).[19] For a fast,
simple method, see the Horner method.

Dealing with exceptional cases
Floating-point computation in a computer can run into three kinds of problems:
• An operation can be mathematically undefined, such as ∞/∞, or division by zero.
• An operation can be legal in principle, but not supported by the specific format, for example, calculating the

square root of −1 or the inverse sine of 2 (both of which result in complex numbers).
• An operation can be legal in principle, but the result can be impossible to represent in the specified format,

because the exponent is too large or too small to encode in the exponent field. Such an event is called an overflow
(exponent too large), underflow (exponent too small) or denormalization (precision loss).

Prior to the IEEE standard, such conditions usually caused the program to terminate, or triggered some kind of trap
that the programmer might be able to catch. How this worked was system-dependent, meaning that floating-point
programs were not portable. (Note that the term "exception" as used in IEEE-754 is a general term meaning an
exceptional condition, which is not necessarily an error, and is a different usage to that typically defined in
programming languages such as a C++ or Java, in which an "exception" is an alternative flow of control, closer to
what is termed a "trap" in IEEE-754 terminology).
Here, the required default method of handling exceptions according to IEEE 754 is discussed (the IEEE-754 optional
trapping and other "alternate exception handling" modes are not discussed). Arithmetic exceptions are (by default)
required to be recorded in "sticky" status flag bits. That they are "sticky" means that they are not reset by the next
(arithmetic) operation, but stay set until explicitly reset. The use of "sticky" flags thus allows for testing of
exceptional conditions to be delayed until after a full floating point expression or subroutine: without them
exceptional conditions that could not be otherwise ignored would require explicit testing immediately after every
floating point operation. By default, an operation always returns a result according to specification without
interrupting computation. For instance, 1/0 returns +∞, while also setting the divide-by-zero flag bit (this default of
∞ is designed so as to often return a finite result when used in subsequent operations and so be safely ignored).
The original IEEE 754 standard, however, failed to recommend operations to handle such sets of arithmetic
exception flag bits. So while these were implemented in hardware, initially programming language implementations
typically did not provide a means to access them (apart from assembler). Over time some programming language
standards (e.g., C99/C11 and Fortran) have been updated to specify methods to access and change status flag bits.
The 2008 version of the IEEE 754 standard now specifies a few operations for accessing and handling the arithmetic
flag bits. The programming model is based on a single thread of execution and use of them by multiple threads has to

http://en.wikipedia.org/w/index.php?title=Booth%27s_multiplication_algorithm
http://en.wikipedia.org/w/index.php?title=Division_algorithm
http://en.wikipedia.org/w/index.php?title=Horner_scheme%23Floating_point_multiplication_and_division
http://en.wikipedia.org/w/index.php?title=Complex_number
http://en.wikipedia.org/w/index.php?title=Arithmetic_overflow
http://en.wikipedia.org/w/index.php?title=Arithmetic_underflow
http://en.wikipedia.org/w/index.php?title=Denormal_number
http://en.wikipedia.org/w/index.php?title=Trap_%28computing%29
http://en.wikipedia.org/w/index.php?title=Porting
http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=C99

Floating point 14

be handled by a means outside of the standard (e.g. C11 specifies that the flags have thread-local storage).
IEEE 754 specifies five arithmetic exceptions that are to be recorded in the status flags ("sticky bits"):
• inexact, set if the rounded (and returned) value is different from the mathematically exact result of the operation.
• underflow, set if the rounded value is tiny (as specified in IEEE 754) and inexact (or maybe limited to if it has

denormalisation loss, as per the 1984 version of IEEE 754), returning a subnormal value including the zeros.
• overflow, set if the absolute value of the rounded value is too large to be represented. An infinity or maximal

finite value is returned, depending on which rounding is used.
• divide-by-zero, set if the result is infinite given finite operands, returning an infinity, either +∞ or −∞.
• invalid, set if a real-valued result cannot be returned e.g. sqrt(−1) or 0/0, returning a quiet NaN.

Fig. 1: resistances in parallel, with total resistance

The default return value for each of the exceptions is designed to
give the correct result in the majority of cases such that the
exceptions can be ignored in the majority of codes. inexact returns
a correctly rounded result, and underflow returns a denormalised
small value and so can almost always be ignored.[20]

divide-by-zero returns infinity exactly, which will typically then
divide a finite number and so give zero, or else will give an invalid
exception subsequently if not, and so can also typically be ignored.

For example, the effective resistance of three resistors in parallel (see fig. 1) is given by
. If a short-circuit develops with set to 0, will return

+infinity which will give a final of 0, as expected[21] (see the continued fraction example of IEEE 754 design
rationale for another example). Overflow and invalid exceptions can typically not be ignored, but do not necessarily
represent errors: for example, a root-finding routine, as part of its normal operation, may evaluate a passed-in
function at values outside of its domain, returning NaN and an invalid exception flag to be ignored until finding a
useful start point.[22]

http://en.wikipedia.org/w/index.php?title=Concurrency_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=C11_%28C_standard_revision%29
http://en.wikipedia.org/w/index.php?title=Thread-local_storage
http://en.wikipedia.org/w/index.php?title=File%3AResistors_in_Parallel.svg
http://en.wikipedia.org/w/index.php?title=Floating_point%23IEEE_754:_floating_point_in_modern_computers
http://en.wikipedia.org/w/index.php?title=Floating_point%23IEEE_754:_floating_point_in_modern_computers
http://en.wikipedia.org/w/index.php?title=Zero_of_a_function

Floating point 15

Accuracy problems

James H. Wilkinson, a pioneer in numerical analysis,
demonstrated that floating point algorithms could be

rigorously analysed.

The fact that floating-point numbers cannot precisely
represent all real numbers, and that floating-point operations
cannot precisely represent true arithmetic operations, leads to
many surprising situations. This is related to the finite
precision with which computers generally represent numbers.

For example, the non-representability of 0.1 and 0.01 (in
binary) means that the result of attempting to square 0.1 is
neither 0.01 nor the representable number closest to it. In
24-bit (single precision) representation, 0.1 (decimal) was
given previously as e = −4; s = 110011001100110011001101,
which is

0.100000001490116119384765625 exactly.
Squaring this number gives

0.010000000298023226097399174250313080847263336181640625
exactly.

Squaring it with single-precision floating-point hardware
(with rounding) gives

0.010000000707805156707763671875 exactly.
But the representable number closest to 0.01 is

0.009999999776482582092285156250 exactly.
Also, the non-representability of π (and π/2) means that an attempted computation of tan(π/2) will not yield a result
of infinity, nor will it even overflow. It is simply not possible for standard floating-point hardware to attempt to
compute tan(π/2), because π/2 cannot be represented exactly. This computation in C:

/* Enough digits to be sure we get the correct approximation. */

double pi = 3.1415926535897932384626433832795;

double z = tan(pi/2.0);

will give a result of 16331239353195370.0. In single precision (using the tanf function), the result will be
−22877332.0.
By the same token, an attempted computation of sin(π) will not yield zero. The result will be (approximately)
0.1225×10−15 in double precision, or −0.8742×10−7 in single precision.[23]

While floating-point addition and multiplication are both commutative (a + b = b + a and a×b = b×a), they are not
necessarily associative. That is, (a + b) + c is not necessarily equal to a + (b + c). Using 7-digit mantissa decimal
arithmetic:

 a = 1234.567, b = 45.67834, c = 0.0004

 (a + b) + c:

 1234.567 (a)

 + 45.67834 (b)

 1280.24534 rounds to 1280.245

 1280.245 (a + b)

 + 0.0004 (c)

http://en.wikipedia.org/w/index.php?title=James_H._Wilkinson
http://en.wikipedia.org/w/index.php?title=Numerical_analysis
http://en.wikipedia.org/w/index.php?title=File%3AWilkinson.jpeg
http://en.wikipedia.org/w/index.php?title=Precision_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Commutative
http://en.wikipedia.org/w/index.php?title=Associative

Floating point 16

 1280.2454 rounds to 1280.245 <--- (a + b) + c

 a + (b + c):

 45.67834 (b)

 + 0.0004 (c)

 45.67874

 1234.567 (a)

 + 45.67874 (b + c)

 1280.24574 rounds to 1280.246 <--- a + (b + c)

They are also not necessarily distributive. That is, (a + b) ×c may not be the same as a×c + b×c:

 1234.567 × 3.333333 = 4115.223

 1.234567 × 3.333333 = 4.115223

 4115.223 + 4.115223 = 4119.338

 but

 1234.567 + 1.234567 = 1235.802

 1235.802 × 3.333333 = 4119.340

In addition to loss of significance, inability to represent numbers such as π and 0.1 exactly, and other slight
inaccuracies, the following phenomena may occur:
• Cancellation: subtraction of nearly equal operands may cause extreme loss of accuracy.[24] When we subtract two

almost equal numbers we set the most significant digits to zero, leaving ourselves with just the insignificant, and
most erroneous, digits. For example, when determining a derivative of a function the following formula is used:

Intuitively one would want an h very close to zero, however when using floating point operations, the smallest
number won't give the best approximation of a derivative. As h grows smaller the difference between f (a + h)
and f(a) grows smaller, cancelling out the most significant and least erroneous digits and making the most
erroneous digits more important. As a result the smallest number of h possible will give a more erroneous
approximation of a derivative than a somewhat larger number. This is perhaps the most common and serious
accuracy problem.

• Conversions to integer are not intuitive: converting (63.0/9.0) to integer yields 7, but converting (0.63/0.09) may
yield 6. This is because conversions generally truncate rather than round. Floor and ceiling functions may produce
answers which are off by one from the intuitively expected value.

• Limited exponent range: results might overflow yielding infinity, or underflow yielding a subnormal number or
zero. In these cases precision will be lost.

• Testing for safe division is problematic: Checking that the divisor is not zero does not guarantee that a division
will not overflow.

•• Testing for equality is problematic. Two computational sequences that are mathematically equal may well
produce different floating-point values.

http://en.wikipedia.org/w/index.php?title=Distributive
http://en.wikipedia.org/w/index.php?title=Loss_of_significance
http://en.wikipedia.org/w/index.php?title=Derivative
http://en.wikipedia.org/w/index.php?title=Floor_and_ceiling_functions
http://en.wikipedia.org/w/index.php?title=Subnormal_number
http://en.wikipedia.org/w/index.php?title=Division_by_zero%23In_computer_arithmetic

Floating point 17

Machine precision and backward error analysis
Machine precision is a quantity that characterizes the accuracy of a floating point system, and is used in backward
error analysis of floating point algorithms. It is also known as unit roundoff or machine epsilon. Usually denoted
Εmach, its value depends on the particular rounding being used.
With rounding to zero,

whereas rounding to nearest,

This is important since it bounds the relative error in representing any non-zero real number x within the normalised
range of a floating point system:

Backward error analysis, popularized by James H. Wilkinson, can be used to establish that an algorithm
implementing a numerical function is numerically stable. The basic approach is to show that although the calculated
result, due to roundoff errors, will not be exactly correct, it is the exact solution to a nearby problem with slightly
perturbed input data. If the perturbation required is small, on the order of the uncertainty in the input data, then the
results are in some sense as accurate as the data "deserves". The algorithm is then defined as backward stable.
As a trivial example, consider a simple expression giving the inner product of (length two) vectors and , then

where indicates correctly rounded floating point
arithmetic

where , from above

and so

where
; ;
;

where , by definition
which is the sum of two slightly perturbed (on the order of Εmach) input data, and so is backward stable. More
realistic examples require estimating the condition number of the function (see Higham 2002 and other references
below).

Minimizing the effect of accuracy problems
Although, as noted previously, individual arithmetic operations of IEEE 754 are guaranteed accurate to within half a
ULP, more complicated formulae can suffer from larger errors due to round-off. The loss of accuracy can be
substantial if a problem or its data are ill-conditioned, meaning that the correct result is hypersensitive to tiny
perturbations in its data. However, even functions that are well-conditioned can suffer from large loss of accuracy if
an algorithm numerically unstable for that data is used: apparently equivalent formulations of expressions in a
programming language can differ markedly in their numerical stability. One approach to remove the risk of such loss
of accuracy is the design and analysis of numerically stable algorithms, which is an aim of the branch of
mathematics known as numerical analysis. Another approach that can protect against the risk of numerical
instabilities is the computation of intermediate (scratch) values in an algorithm at a higher precision than the final
result requires, which can remove, or reduce by orders of magnitude, such risk: IEEE 754 quadruple precision and

http://en.wikipedia.org/w/index.php?title=Error_analysis%23Error_analysis_in_numerical_modeling
http://en.wikipedia.org/w/index.php?title=Error_analysis%23Error_analysis_in_numerical_modeling
http://en.wikipedia.org/w/index.php?title=Machine_epsilon
http://en.wikipedia.org/w/index.php?title=Relative_error
http://en.wikipedia.org/w/index.php?title=James_H._Wilkinson
http://en.wikipedia.org/w/index.php?title=Numerical_stability%23Forward%2C_backward%2C_and_mixed_stability
http://en.wikipedia.org/w/index.php?title=Condition_number
http://en.wikipedia.org/w/index.php?title=Condition_number
http://en.wikipedia.org/w/index.php?title=Numerical_stability
http://en.wikipedia.org/w/index.php?title=Numerical_analysis
http://en.wikipedia.org/w/index.php?title=Quadruple-precision_floating-point_format

Floating point 18

extended precision are designed for this purpose when computing at double precision.[25][26]

For example, the following algorithm is a direct implementation to compute the function A(x) = (x–1)/(exp(x–1) –
1) which is well-conditioned at 1.0,[27] however it can be shown to be numerically unstable and lose up to half the
significant digits carried by the arithmetic when computed near 1.0.[11]

double A(double X)

{

 double Y, Z; // [1]

 Y = X - 1.0;

 Z = exp(Y);

 if (Z != 1.0) Z = Y/(Z - 1.0); // [2]

 return(Z);

}

If, however, intermediate computations are all performed in extended precision (e.g. by setting line [1] to C99 long
double), then up to full precision in the final double result can be maintained.[28] Alternatively, a numerical analysis
of the algorithm reveals that if the following non-obvious change to line [2] is made:

 if (Z != 1.0) Z = log(Z)/(Z - 1.0);

then the algorithm becomes numerically stable and can compute to full double precision.
To maintain the properties of such carefully constructed numerically stable programs, careful handling by the
compiler is required. Certain "optimizations" that compilers might make (for example, reordering operations) can
work against the goals of well-behaved software. There is some controversy about the failings of compilers and
language designs in this area: C99 is an example of a language where such optimisations are carefully specified so as
to maintain numerical precision. See the external references at the bottom of this article.
A detailed treatment of the techniques for writing high-quality floating-point software is beyond the scope of this
article, and the reader is referred to,[29][30] and the other references at the bottom of this article. Kahan suggests
several rules of thumb that can substantially decrease by orders of magnitude[30] the risk of numerical anomalies, in
addition to, or in lieu of, a more careful numerical analysis. These include: as noted above, computing all
expressions and intermediate results in the highest precision supported in hardware (a common rule of thumb is to
carry twice the precision of the desired result i.e. compute in double precision for a final single precision result, or in
double extended or quad precision for up to double precision results[31]); and rounding input data and results to only
the precision required and supported by the input data (carrying excess precision in the final result beyond that
required and supported by the input data can be misleading, increases storage cost and decreases speed, and the
excess bits can affect convergence of numerical procedures:[32] notably, the first form of the iterative example given
below converges correctly when using this rule of thumb). Brief descriptions of several additional issues and
techniques follow.
As decimal fractions can often not be exactly represented in binary floating-point, such arithmetic is at its best when
it is simply being used to measure real-world quantities over a wide range of scales (such as the orbital period of a
moon around Saturn or the mass of a proton), and at its worst when it is expected to model the interactions of
quantities expressed as decimal strings that are expected to be exact.[33][34] An example of the latter case is financial
calculations. For this reason, financial software tends not to use a binary floating-point number representation.[35]

The "decimal" data type of the C# and Python programming languages, and the IEEE 754-2008 decimal
floating-point standard, are designed to avoid the problems of binary floating-point representations when applied to
human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed
in decimal.

http://en.wikipedia.org/w/index.php?title=Extended_precision
http://en.wikipedia.org/w/index.php?title=C99
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=C99
http://en.wikipedia.org/w/index.php?title=Proton
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=IEEE_754-2008

Floating point 19

Expectations from mathematics may not be realised in the field of floating-point computation. For example, it is
known that , and that , however these facts cannot be relied
on when the quantities involved are the result of floating-point computation.
The use of the equality test (if (x==y) ...) requires care when dealing with floating point numbers. Even
simple expressions like 0.6/0.2-3==0 will, on most computers, fail to be true[36] (in IEEE 754 double precision,
for example, 0.6/0.2-3 is approximately equal to -4.44089209850063e-16). Consequently, such tests are
sometimes replaced with "fuzzy" comparisons (if (abs(x-y) < epsilon) ..., where epsilon is
sufficiently small and tailored to the application, such as 1.0E−13). The wisdom of doing this varies greatly, and can
require numerical analysis to bound epsilon.[37] Values derived from the primary data representation and their
comparisons should be performed in a wider, extended, precision to minimise the risk of such inconsistencies due to
round-off errors.[30] It is often better to organize the code in such a way that such tests are unnecessary. For example,
in computational geometry, exact tests of whether a point lies off or on a line or plane defined by other points can be
performed using adaptive precision or exact arithmetic methods.[38]

Small errors in floating-point arithmetic can grow when mathematical algorithms perform operations an enormous
number of times. A few examples are matrix inversion, eigenvector computation, and differential equation solving.
These algorithms must be very carefully designed, using numerical approaches such as Iterative refinement, if they
are to work well.[39]

Summation of a vector of floating point values is a basic algorithm in scientific computing, and so an awareness of
when loss of significance can occur is essential. For example, if one is adding a very large number of numbers, the
individual addends are very small compared with the sum. This can lead to loss of significance. A typical addition
would then be something like

3253.671

+ 3.141276

3256.812

The low 3 digits of the addends are effectively lost. Suppose, for example, that one needs to add many numbers, all
approximately equal to 3. After 1000 of them have been added, the running sum is about 3000; the lost digits are not
regained. The Kahan summation algorithm may be used to reduce the errors.[40]

Round-off error can affect the convergence and accuracy of iterative numerical procedures. As an example,
Archimedes approximated π by calculating the perimeters of polygons inscribing and circumscribing a circle,
starting with hexagons, and successively doubling the number of sides. As noted above, computations may be
rearranged in a way that is mathematically equivalent but less prone to error (numerical analysis). Two forms of the
recurrence formula for the circumscribed polygon are:

Here is a computation using IEEE "double" (a significand with 53 bits of precision) arithmetic:

 i 6 × 2i × t
i
, first form 6 × 2i × t

i
, second form

 0 3.4641016151377543863 3.4641016151377543863

 1 3.2153903091734710173 3.2153903091734723496

 2 3.1596599420974940120 3.1596599420975006733

http://en.wikipedia.org/w/index.php?title=Machine_epsilon
http://en.wikipedia.org/w/index.php?title=Computational_geometry
http://en.wikipedia.org/w/index.php?title=Matrix_inversion
http://en.wikipedia.org/w/index.php?title=Eigenvector
http://en.wikipedia.org/w/index.php?title=Iterative_refinement
http://en.wikipedia.org/w/index.php?title=Computational_science
http://en.wikipedia.org/w/index.php?title=Kahan_summation_algorithm
http://en.wikipedia.org/w/index.php?title=Archimedes
http://en.wikipedia.org/w/index.php?title=Numerical_analysis

Floating point 20

 3 3.1460862151314012979 3.1460862151314352708

 4 3.1427145996453136334 3.1427145996453689225

 5 3.1418730499801259536 3.1418730499798241950

 6 3.1416627470548084133 3.1416627470568494473

 7 3.1416101765997805905 3.1416101766046906629

 8 3.1415970343230776862 3.1415970343215275928

 9 3.1415937488171150615 3.1415937487713536668

10 3.1415929278733740748 3.1415929273850979885

11 3.1415927256228504127 3.1415927220386148377

12 3.1415926717412858693 3.1415926707019992125

13 3.1415926189011456060 3.1415926578678454728

14 3.1415926717412858693 3.1415926546593073709

15 3.1415919358822321783 3.1415926538571730119

16 3.1415926717412858693 3.1415926536566394222

17 3.1415810075796233302 3.1415926536065061913

18 3.1415926717412858693 3.1415926535939728836

19 3.1414061547378810956 3.1415926535908393901

20 3.1405434924008406305 3.1415926535900560168

21 3.1400068646912273617 3.1415926535898608396

22 3.1349453756585929919 3.1415926535898122118

23 3.1400068646912273617 3.1415926535897995552

24 3.2245152435345525443 3.1415926535897968907

25 3.1415926535897962246

26 3.1415926535897962246

27 3.1415926535897962246

28 3.1415926535897962246

 The true value is 3.14159265358979323846264338327...

While the two forms of the recurrence formula are clearly mathematically equivalent,[41] the first subtracts 1 from a
number extremely close to 1, leading to an increasingly problematic loss of significant digits. As the recurrence is
applied repeatedly, the accuracy improves at first, but then it deteriorates. It never gets better than about 8 digits,
even though 53-bit arithmetic should be capable of about 16 digits of precision. When the second form of the
recurrence is used, the value converges to 15 digits of precision.

Notes and references
[1] W.Smith, Steven (1997). "Chapter 28, Fixed versus Floating Point" (http:/ / www. dspguide. com/ ch28/ 4. htm). The Scientist and Engineer's

Guide to Digital Signal Processing. California Technical Pub. p. 514. ISBN 0966017633. . Retrieved December 31, 2012.
[2] B. Randell (1982). From analytical engine to electronic digital computer: the contributions of Ludgate, Torres, and Bush. IEEE Annals of the

History of Computing, 04(4). pp. 327–341.
[3] "Konrad Zuse’s Legacy: The Architecture of the Z1 and Z3" (http:/ / ed-thelen. org/ comp-hist/ Zuse_Z1_and_Z3. pdf). IEEE Annals of the

History of Computing 19 (2): 5–15. 1997. .
[4] William Kahan (15 July 1997). "The Baleful Effect of Computer Languages and Benchmarks upon Applied Mathematics, Physics and

Chemistry" (http:/ / www. cs. berkeley. edu/ ~wkahan/ SIAMjvnl. pdf). .
[5] "The Baleful Effect of Computer Languages and Benchmarks upon Applied Mathematics, Physics and Chemistry. John von Neumann

Lecture" (http:/ / www. cs. berkeley. edu/ ~wkahan/ SIAMjvnl. pdf). 16 July 1997. p. 3. .
[6] Randell, Brian, ed. (1982) [1973]. The Origins of Digital Computers: Selected Papers (3rd ed.). Berlin; New York: Springer-Verlag. p. 244.

ISBN 3-540-11319-3.
[7] Severance, Charles (20 February 1998). "An Interview with the Old Man of Floating-Point" (http:/ / www. eecs. berkeley. edu/ ~wkahan/

ieee754status/ 754story. html). .

http://en.wikipedia.org/w/index.php?title=Significant_digit
http://www.dspguide.com/ch28/4.htm
http://ed-thelen.org/comp-hist/Zuse_Z1_and_Z3.pdf
http://www.cs.berkeley.edu/~wkahan/SIAMjvnl.pdf
http://www.cs.berkeley.edu/~wkahan/SIAMjvnl.pdf
http://www.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
http://www.eecs.berkeley.edu/~wkahan/ieee754status/754story.html

Floating point 21

[8] "W. Kahn. "On the Cost of Floating-Point Computation Without Extra-Precise Arithmetic"" (http:/ / www. cs. berkeley. edu/ ~wkahan/
Qdrtcs. pdf) (PDF). 20 November 2004. . Retrieved 19 February 2012.

[9] "openEXR" (http:/ / www. openexr. com/ about. html). openEXR. . Retrieved 25 April 2012.
[10] http:/ / babbage. cs. qc. edu/ IEEE-754/ 32bit. html
[11] William Kahan (1 March 1998). "How JAVA's Floating-Point Hurts Everyone Everywhere" (http:/ / www. cs. berkeley. edu/ ~wkahan/

JAVAhurt. pdf). .
[12] William Kahan (12 February 1981). "Why do we need a floating-point arithmetic standard?" (http:/ / www. cs. berkeley. edu/ ~wkahan/

ieee754status/ why-ieee. pdf). .
[13] Charles Severance (20 February 1998). "An Interview with the Old Man of Floating-Point" (http:/ / www. eecs. berkeley. edu/ ~wkahan/

ieee754status/ 754story. html). .
[14] William Kahan (11 June 1996). "The Baleful Effect of Computer Benchmarks upon Applied Mathematics, Physics and Chemistry" (http:/ /

www. cs. berkeley. edu/ ~wkahan/ ieee754status/ baleful. pdf). .
[15][15] Computer hardware doesn't necessarily compute the exact value; it simply has to produce the equivalent rounded result as though it had

computed the infinitely precise result.
[16] William Kahan (11 January 2006). "How Futile are Mindless Assessments of Roundoff in Floating-Point Computation ?" (http:/ / www. cs.

berkeley. edu/ ~wkahan/ Mindless. pdf). .
[17] David Goldberg (March 1991). "What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys,

volume 23, issue 1" (http:/ / www. validlab. com/ goldberg/ paper. pdf). p. 195. .
[18] Goldberg, David (1991). "What Every Computer Scientist Should Know About Floating-Point Arithmetic" (http:/ / docs. sun. com/ source/

806-3568/ ncg_goldberg. html). ACM Computing Surveys 23: 5–48. doi:10.1145/103162.103163. . Retrieved 2 September 2010.
[19] The enormous complexity of modern division algorithms once led to a famous error. An early version of the Intel Pentium chip was shipped

with a division instruction that, on rare occasions, gave slightly incorrect results. Many computers had been shipped before the error was
discovered. Until the defective computers were replaced, patched versions of compilers were developed that could avoid the failing cases. See
Pentium FDIV bug.

[20] William Kahan (1 October 1997). "Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic" (http:/ / www.
cs. berkeley. edu/ ~wkahan/ ieee754status/ IEEE754. PDF). .

[21] "Intel® 64 and IA-32 Architectures Software Developers' Manuals. Volume 1. section D.3.2.1" (http:/ / www. intel. com/ content/ www/ us/
en/ processors/ architectures-software-developer-manuals. html). .

[22] William Kahan (1 October 1997). "Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic (page 9)" (http:/
/ www. cs. berkeley. edu/ ~wkahan/ ieee754status/ IEEE754. PDF). .

[23] But an attempted computation of cos(π) yields −1 exactly. Since the derivative is nearly zero near π, the effect of the inaccuracy in the
argument is far smaller than the spacing of the floating-point numbers around −1, and the rounded result is exact.

[24] Richard Harris (October 2010). "You're Going To Have To Think!" (http:/ / accu. org/ index. php/ journals/ 1702). Overload (99 (http:/ /
accu. org/ var/ uploads/ journals/ overload99. pdf)): 5–10. ISSN 1354-3172. . Retrieved 24 September 2011. "Far more worrying is
cancellation error which can yield catastrophic loss of precision."

[25] William Kahan (3 August 2011). "Desperately Needed Remedies for the Undebuggability of Large Floating-Point Computations in Science
and Engineering" (http:/ / www. eecs. berkeley. edu/ ~wkahan/ Boulder. pdf). .

[26][26] Kahan notes: "Except in extremely uncommon situations, extra-precise arithmetic generally attenuates risks due to roundoff at far less cost
than the price of a competent error-analyst."

[27] note: the Taylor expansion of this function demonstrates that it is well-conditioned near 1: A(x) = 1 – (x–1)/2 + (x–1)^2/12 – (x–1)^4/720 +
(x–1)^6/30240 – (x–1)^8/1209600 + ... for |x–1| < π

[28][28] if long double is IEEE quad precision then full double precision is retained; if long double is IEEE double extended precision then
additional, but not full, precision is retained

[29] Higham, Nicholas (2002). "Designing stable algorithms" in Accuracy and Stability of Numerical Algorithms (2 ed). SIAM. pp. 27–28.
[30] William Kahan. ""Four Rules of Thumb for Best Use of Modern Floating-point Hardware" in Marketing versus Mathematics" (http:/ / www.

cs. berkeley. edu/ ~wkahan/ MktgMath. pdf). p. 47. .
[31] William Kahan (12 February 1981). "Why do we need a floating-point arithmetic standard? (page 26)" (http:/ / www. cs. berkeley. edu/

~wkahan/ ieee754status/ why-ieee. pdf). .
[32] William Kahan (transcribed by David Bindel) (4 June 2001). "Lecture notes of System Support for Scientific Computation" (http:/ / www.

cims. nyu. edu/ ~dbindel/ class/ cs279/ notes-06-04. pdf). .
[33] Prof. W. Kahan (27 August 2000). "Marketing versus Mathematics (p 15)" (http:/ / www. cs. berkeley. edu/ ~wkahan/ MktgMath. pdf). .
[34] Prof. W. Kahan (5 July 2005). "Floating-Point Arithmetic Besieged by "Business Decisions": Keynote Address for the IEEE-Sponsored

ARITH 17 Symposium on Computer Arithmetic" (http:/ / www. cs. berkeley. edu/ ~wkahan/ ARITH_17. pdf). p. 6. .
[35] "General Decimal Arithmetic" (http:/ / speleotrove. com/ decimal/). Speleotrove.com. . Retrieved 25 April 2012.
[36] Tom Christiansen, Nathan Torkington, and others (2006). "perlfaq4 / Why is int() broken?" (http:/ / perldoc. perl. org/ 5. 8. 8/ perlfaq4.

html#Why-is-int()-broken?). perldoc.perl.org. . Retrieved 11 January 2011.
[37] Higham, Nicholas (2002). "Subtleties of floating point arithmetic" in Accuracy and Stability of Numerical Algorithms (2 ed). SIAM. p. 493.
[38] Jonathan Richard Shewchuk (1997). Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete &

Computational Geometry 18:305-363 (http:/ / www. cs. cmu. edu/ ~quake/ robust. html). .

http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf
http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf
http://www.openexr.com/about.html
http://babbage.cs.qc.edu/IEEE-754/32bit.html
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf
http://www.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
http://www.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
http://www.cs.berkeley.edu/~wkahan/ieee754status/baleful.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/baleful.pdf
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://www.validlab.com/goldberg/paper.pdf
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://en.wikipedia.org/w/index.php?title=Pentium_FDIV_bug
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://accu.org/index.php/journals/1702
http://en.wikipedia.org/w/index.php?title=Overload_%28magazine%29
http://accu.org/var/uploads/journals/overload99.pdf
http://accu.org/var/uploads/journals/overload99.pdf
http://www.eecs.berkeley.edu/~wkahan/Boulder.pdf
http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf
http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf
http://www.cims.nyu.edu/~dbindel/class/cs279/notes-06-04.pdf
http://www.cims.nyu.edu/~dbindel/class/cs279/notes-06-04.pdf
http://www.cs.berkeley.edu/~wkahan/MktgMath.pdf
http://www.cs.berkeley.edu/~wkahan/ARITH_17.pdf
http://speleotrove.com/decimal/
http://perldoc.perl.org/5.8.8/perlfaq4.html#Why-is-int%28%29-broken?
http://perldoc.perl.org/5.8.8/perlfaq4.html#Why-is-int%28%29-broken?
http://www.cs.cmu.edu/~quake/robust.html

Floating point 22

[39] Prof. W. Kahan and Ms. Melody Y. Ivory (3 July 1997). "Roundoff Degrades an Idealized Cantilever" (http:/ / www. cs. berkeley. edu/
~wkahan/ Cantilever. pdf). .

[40] Higham, Nicholas (2002). Summation in "Subtleties of floating point arithmetic" in Accuracy and Stability of Numerical Algorithms (2 ed).
SIAM. pp. 110–123.

[41] The equivalence of the two forms can be verified algebraically by noting that the denominator of the fraction in the second form is the
conjugate of the numerator of the first. By multiplying the top and bottom of the first expression by this conjugate, one obtains the second
expression.

Further reading
• What Every Computer Scientist Should Know About Floating-Point Arithmetic (http:/ / download. oracle. com/

docs/ cd/ E19422-01/ 819-3693/ ncg_goldberg. html), by David Goldberg, published in the March, 1991 issue of
Computing Surveys.

• Nicholas Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. ISBN
0-89871-355-2.

• Gene F. Golub and Charles F. van Loan. Matrix Computations, Third Edition. Johns Hopkins University Press,
1986. ISBN 0-8018-5413.

• Donald Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition.
Addison-Wesley, 1997. ISBN 0-201-89684-2. Section 4.2: Floating Point Arithmetic, pp. 214–264.

• Press et al. Numerical Recipes in C++. The Art of Scientific Computing, ISBN 0-521-75033-4.
• James H. Wilkinson. Rounding errors in algebraic processes. 1963. -- Classic influential treatises on floating

point arithmetic.
• James H. Wilkinson. The Algebraic Eigenvalue Problem, Clarendon Press, 1965.
• P.H. Sterbenz. Floating point computation. 1974. -- Another classic book on floating point and error analysis.

External links
• Kahan, William and Darcy, Joseph (2001). How Java's floating-point hurts everyone everywhere (http:/ / www.

cs. berkeley. edu/ ~wkahan/ JAVAhurt. pdf). Retrieved 5 September 2003.
• Survey of Floating-Point Formats (http:/ / www. mrob. com/ pub/ math/ floatformats. html) This page gives a

very brief summary of floating-point formats that have been used over the years.
• The pitfalls of verifying floating-point computations (http:/ / hal. archives-ouvertes. fr/ hal-00128124/ en/), by

David Monniaux, also printed in ACM Transactions on programming languages and systems (TOPLAS), May
2008: a compendium of non-intuitive behaviours of floating-point on popular architectures, with implications for
program verification and testing

• http:/ / www. opencores. org The OpenCores website contains open source floating point IP cores for the
implementation of floating point operators in FPGA or ASIC devices. The project, double_fpu, contains verilog
source code of a double precision floating point unit. The project, fpuvhdl, contains vhdl source code of a single
precision floating point unit.

• http:/ / msdn. microsoft. com/ en-us/ library/ aa289157(v=vs. 71). aspx "Microsoft Visual C++ Floating-Point
Optimization", by Eric Fleegal, MSDN, 2004

http://www.cs.berkeley.edu/~wkahan/Cantilever.pdf
http://www.cs.berkeley.edu/~wkahan/Cantilever.pdf
http://en.wikipedia.org/w/index.php?title=Denominator
http://en.wikipedia.org/w/index.php?title=Conjugate_%28algebra%29
http://en.wikipedia.org/w/index.php?title=Numerator
http://download.oracle.com/docs/cd/E19422-01/819-3693/ncg_goldberg.html
http://download.oracle.com/docs/cd/E19422-01/819-3693/ncg_goldberg.html
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Numerical_Recipes
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=James_H._Wilkinson
http://en.wikipedia.org/w/index.php?title=James_H._Wilkinson
http://en.wikipedia.org/w/index.php?title=Error_analysis%23Error_analysis_in_numerical_modeling
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://www.mrob.com/pub/math/floatformats.html
http://hal.archives-ouvertes.fr/hal-00128124/en/
http://en.wikipedia.org/w/index.php?title=Association_for_Computing_Machinery
http://www.opencores.org
http://msdn.microsoft.com/en-us/library/aa289157(v=vs.71).aspx

Single-precision floating-point format 23

Single-precision floating-point format
Single-precision floating-point format is a computer number format that occupies 4 bytes (32 bits) in computer
memory and represents a wide dynamic range of values by using a floating point.
In IEEE 754-2008 the 32-bit base 2 format is officially referred to as binary32. It was called single in IEEE
754-1985. In older computers, other floating-point formats of 4 bytes were used.
One of the first programming languages to provide single- and double-precision floating-point data types was
Fortran. Before the widespread adoption of IEEE 754-1985, the representation and properties of the double float data
type depended on the computer manufacturer and computer model.
Single-precision binary floating-point is used due to its wider range over fixed point (of the same bit-width), even if
at the cost of precision.
Single precision is known as float in C, C++, C#, Java,[1] and Haskell, and as single in Delphi (Pascal), Visual Basic,
and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave prior to 3.2 refer
to double-precision numbers.

IEEE 754 single-precision binary floating-point format: binary32
The IEEE 754 standard specifies a binary32 as having:
• Sign bit: 1 bit
• Exponent width: 8 bits
• Significand precision: 24 (23 explicitly stored)
This gives from 6 to 9 significant decimal digits precision (if a decimal string with at most 6 significant decimal is
converted to IEEE 754 single precision and then converted back to the same number of significant decimal, then the
final string should match the original; and if an IEEE 754 single precision is converted to a decimal string with at
least 9 significant decimal and then converted back to single, then the final number must match the original [2]).
Sign bit determines the sign of the number, which is the sign of the significand as well. Exponent is either an 8 bit
signed integer from −128 to 127 (2's Complement) or an 8 bit unsigned integer from 0 to 255 which is the accepted
biased form in IEEE 754 binary32 definition. For this case an exponent value of 127 represents the actual zero.
The true significand includes 23 fraction bits to the right of the binary point and an implicit leading bit (to the left of
the binary point) with value 1 unless the exponent is stored with all zeros. Thus only 23 fraction bits of the
significand appear in the memory format but the total precision is 24 bits (equivalent to log10(224) ≈ 7.225 decimal
digits). The bits are laid out as follows:

The real value assumed by a given 32 bit binary32 data with a given biased exponent e and a 23 bit fraction is
where more precisely we have:

In this example:

•

•

http://en.wikipedia.org/w/index.php?title=Computer_number_format
http://en.wikipedia.org/w/index.php?title=IEEE_754-2008
http://en.wikipedia.org/w/index.php?title=IEEE_754-1985
http://en.wikipedia.org/w/index.php?title=IEEE_754-1985
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=IEEE_754-1985
http://en.wikipedia.org/w/index.php?title=Fixed-point_arithmetic
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Object_Pascal
http://en.wikipedia.org/w/index.php?title=MATLAB
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ruby
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=OCaml
http://en.wikipedia.org/w/index.php?title=GNU_Octave
http://en.wikipedia.org/w/index.php?title=Double-precision_floating-point_format
http://en.wikipedia.org/w/index.php?title=Sign_bit
http://en.wikipedia.org/w/index.php?title=Exponent
http://en.wikipedia.org/w/index.php?title=Precision_%28arithmetic%29
http://en.wikipedia.org/w/index.php?title=File:Float_example.svg

Single-precision floating-point format 24

•
thus:

•

Exponent encoding
The single-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero
offset being 127; also known as exponent bias in the IEEE 754 standard.
• Emin = 01H−7FH = −126
• Emax = FEH−7FH = 127
• Exponent bias = 7FH = 127
Thus, in order to get the true exponent as defined by the offset binary representation, the offset of 127 has to be
subtracted from the stored exponent.
The stored exponents 00H and FFH are interpreted specially.

Exponent Significand zero Significand non-zero Equation

00H zero, −0 subnormal numbers (−1)signbits×2−126× 0.significandbits

01H, ..., FEH normalized value (−1)signbits×2exponentbits−127× 1.significandbits

FFH ±infinity NaN (quiet, signalling)

The minimum positive (subnormal) value is 2−149 ≈ 1.4 × 10−45. The minimum positive normal value is 2−126 ≈ 1.18
× 10−38. The maximum representable value is (2−2−23) × 2127 ≈ 3.4 × 1038.

Converting from decimal representation to binary32 format
In general refer to the IEEE 754 standard itself for the strict conversion (including the rounding behaviour) of a real
number into its equivalent binary32 format.
Here we can show how to convert a base 10 real number into an IEEE 754 binary32 format using the following
outline:
•• consider a real number with an integer and a fraction part such as 12.375
• convert and normalize the integer part into binary
•• convert the fraction part using the following technique as shown here
•• add the two results and adjust them to produce a proper final conversion
Conversion of the fractional part:

consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the
integer part and re-multiply new fraction by 2 until a fraction of zero is found or until the precision limit is reached
which is 23 fraction digits for IEEE 754 binary32 format.
0.375 x 2 = 0.750 = 0 + 0.750 => b−1 = 0, the integer part represents the binary fraction digit. Re-multiply 0.750 by 2
to proceed
0.750 x 2 = 1.500 = 1 + 0.500 => b−2 = 1
0.500 x 2 = 1.000 = 1 + 0.000 => b−3 = 1, fraction = 0.000, terminate
We see that (0.375)10 can be exactly represented in binary as (0.011)2. Not all decimal fractions can be represented in
a finite digit binary fraction. For example decimal 0.1 cannot be represented in binary exactly. So it is only
approximated.
Therefore (12.375)10 = (12)10 + (0.375)10 = (1100)2 + (0.011)2 = (1100.011)2

http://en.wikipedia.org/w/index.php?title=Offset-binary
http://en.wikipedia.org/w/index.php?title=Exponent_bias
http://en.wikipedia.org/w/index.php?title=0_%28number%29
http://en.wikipedia.org/w/index.php?title=%E2%88%920
http://en.wikipedia.org/w/index.php?title=Subnormal_numbers
http://en.wikipedia.org/w/index.php?title=Infinity
http://en.wikipedia.org/w/index.php?title=NaN
http://en.wikipedia.org/w/index.php?title=Normalized_number
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system

Single-precision floating-point format 25

Also IEEE 754 binary32 format requires that you represent real values in format, (see
Normalized number, Denormalized number) so that 1100.011 is shifted to the right by 3 digits to become

Finally we can see that:
From which we deduce:
•• The exponent is 3 (and in the biased form it is therefore 130 = 1000 0010)
•• The fraction is 100011 (looking to the right of the binary point)
From these we can form the resulting 32 bit IEEE 754 binary32 format representation of 12.375 as:
0-10000010-10001100000000000000000 = 41460000H
Note: consider converting 68.123 into IEEE 754 binary32 format: Using the above procedure you expect to get
42883EF9H with the last 4 bits being 1001 However due to the default rounding behaviour of IEEE 754 format what
you get is 42883EFAH whose last 4 bits are 1010 .

Ex 1: Consider decimal 1 We can see that:
From which we deduce:
•• The exponent is 0 (and in the biased form it is therefore 127 = 0111 1111)
•• The fraction is 0 (looking to the right of the binary point in 1.0 is all 0 = 000...0)
From these we can form the resulting 32 bit IEEE 754 binary32 format representation of real number 1 as:
0-01111111-00000000000000000000000 = 3f800000H
Ex 2: Consider a value 0.25 . We can see that:
From which we deduce:
• The exponent is −2 (and in the biased form it is 127+(−2)= 125 = 0111 1101)
•• The fraction is 0 (looking to the right of binary point in 1.0 is all zeros)
From these we can form the resulting 32 bit IEEE 754 binary32 format representation of real number 0.25 as:
0-01111101-00000000000000000000000 = 3e800000H
Ex 3: Consider a value of 0.375 . We saw that
Hence after determining a representation of 0.375 as we can proceed as above:
• The exponent is −2 (and in the biased form it is 127+(−2)= 125 = 0111 1101)
• The fraction is 1 (looking to the right of binary point in 1.1 is a single 1 = x1)
From these we can form the resulting 32 bit IEEE 754 binary32 format representation of real number 0.375 as:
0-01111101-10000000000000000000000 = 3ec00000H

Single-precision examples
These examples are given in bit representation, in hexadecimal, of the floating-point value. This includes the sign,
(biased) exponent, and significand.

3f80 0000 = 1

c000 0000 = −2

7f7f ffff ≈ 3.4028234 × 1038 (max single precision)

0000 0000 = 0

8000 0000 = −0

7f80 0000 = infinity

http://en.wikipedia.org/w/index.php?title=Normalized_number
http://en.wikipedia.org/w/index.php?title=Denormalized_number
http://en.wikipedia.org/w/index.php?title=Hexadecimal

Single-precision floating-point format 26

ff80 0000 = −infinity

3eaa aaab ≈ 1/3

By default, 1/3 rounds up instead of down like double precision, because of the even number of bits in the
significand. So the bits beyond the rounding point are 1010... which is more than 1/2 of a unit in the last place.

Converting from single-precision binary to decimal
We start with the hexadecimal representation of the value, 41c80000, in this example, and convert it to binary

41c8 0000
16
 = 0100 0001 1100 1000 0000 0000 0000 0000

2

then we break it down into three parts; sign bit, exponent and significand.

Sign bit: 0

Exponent: 1000 0011
2
 = 83

16
 = 131

Significand: 100 1000 0000 0000 0000 0000
2
 = 480000

16

We then add the implicit 24th bit to the significand

Significand: 1100 1000 0000 0000 0000 0000
2
 = C80000

16

and decode the exponent value by subtracting 127

Raw exponent: 83
16
 = 131

Decoded exponent: 131 − 127 = 4

Each of the 24 bits of the significand (including the implicit 24th bit), bit 23 to bit 0, represents a value, starting at 1
and halves for each bit, as follows

bit 23 = 1

bit 22 = 0.5

bit 21 = 0.25

bit 20 = 0.125

bit 19 = 0.0625

.

.

bit 0 = 0.00000011920928955078125

The significand in this example has three bits set, bit 23, bit 22 and bit 19. We can now decode the significand by
adding the values represented by these bits.

Decoded significand: 1 + 0.5 + 0.0625 = 1.5625 = C80000/223

Then we need to multiply with the base, 2, to the power of the exponent to get the final result

1.5625 × 24 = 25

Thus

41c8 0000 = 25

This is equivalent to:

http://en.wikipedia.org/w/index.php?title=Double_precision
http://en.wikipedia.org/w/index.php?title=Unit_in_the_last_place

Single-precision floating-point format 27

where is the sign bit, is the exponent, and is the significand.

External links
• Online calculator [3]

• Online converter for IEEE 754 numbers with single precision [4]

• C source code to convert between IEEE double, single, and half precision can be found here [5]

References
[1] http:/ / java. sun. com/ docs/ books/ tutorial/ java/ nutsandbolts/ datatypes. html
[2] William Kahan (1 October 1987). "Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic" (http:/ / www. cs.

berkeley. edu/ ~wkahan/ ieee754status/ IEEE754. PDF). .
[3] http:/ / www. h-schmidt. net/ FloatApplet/ IEEE754. html
[4] http:/ / www. binaryconvert. com/ convert_float. html
[5] http:/ / www. mathworks. com/ matlabcentral/ fileexchange/ 23173

Significand

A diagram showing a representation of a floating point
number using a significand and an exponent.

The significand (also coefficient or mantissa) is part of a number
in scientific notation or a floating-point number, consisting of its
significant digits. Depending on the interpretation of the exponent,
the significand may represent an integer or a fraction.

Examples

The number 123.45 can be represented as a decimal floating-point
number with an integer significand of 12345 and an exponent of −2. Its value is given by the following arithmetic:

12345 × 10−2

This same value can also be represented in normalized form with a fractional coefficient of 1.2345 and an exponent
of +2:

1.2345 × 10+2

Finally, this value can be represented in the format given by the Language Independent Arithmetic standard and
several programming language standards, including Ada, C, Fortran and Modula-2, as:

0.12345 × 10+3

Significands and the hidden bit
When working in binary, the significand is characterized by its width in binary digits (bits). Because the most
significant bit is always 1 for a normalized number, this bit is not typically stored and is called the "hidden bit".
Depending on the context, the hidden bit may or may not be counted towards the width of the significand. For
example, the same IEEE 754 double precision format is commonly described as having either a 53-bit significand,
including the hidden bit, or a 52-bit significand, not including the hidden bit. The notion of a hidden bit only applies
to binary representations. IEEE 754 defines the precision, p, to be the number of digits in the significand, including
any implicit leading bit (e.g. precision, p, of double precision format is 53).

http://www.h-schmidt.net/FloatApplet/IEEE754.html
http://www.binaryconvert.com/convert_float.html
http://www.mathworks.com/matlabcentral/fileexchange/23173
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.h-schmidt.net/FloatApplet/IEEE754.html
http://www.binaryconvert.com/convert_float.html
http://www.mathworks.com/matlabcentral/fileexchange/23173
http://en.wikipedia.org/w/index.php?title=Exponent
http://en.wikipedia.org/w/index.php?title=File%3AFloat_mantissa_exponent.png
http://en.wikipedia.org/w/index.php?title=Coefficient
http://en.wikipedia.org/w/index.php?title=Scientific_notation
http://en.wikipedia.org/w/index.php?title=Significant_digit
http://en.wikipedia.org/w/index.php?title=Exponent
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=Fraction_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Decimal
http://en.wikipedia.org/w/index.php?title=Scientific_notation
http://en.wikipedia.org/w/index.php?title=Language_Independent_Arithmetic
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=Modula-2
http://en.wikipedia.org/w/index.php?title=Binary_number_system
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Normalized_number
http://en.wikipedia.org/w/index.php?title=Hidden_bit
http://en.wikipedia.org/w/index.php?title=IEEE_754
http://en.wikipedia.org/w/index.php?title=Double_precision

Significand 28

Use of "mantissa"
In American English, the original word for this seems to have been mantissa (Burks et al.), and as of 2005 this usage
remains common in computing and among computer scientists. However, this use of mantissa is discouraged by the
IEEE floating-point standard committee and by some professionals such as William Kahan and Donald Knuth,
because it conflicts with the pre-existing use of mantissa for the fractional part of a logarithm (see also common
logarithm).
The confusion is because scientific notation and floating point are log-linear representations, not logarithmic. To
multiply two numbers, given their logarithms, one just adds them – adds the characteristic (integer part) and adds the
mantissa (fractional part). By contrast, to multiply two floating point numbers, one adds the exponent (which is
logarithmic) and multiplies the significand (which is linear). Using "mantissa" for both terms obscures this
distinction and creates a risk of confusion.

References
• Burks, Arthur W.; Goldstine, Herman H.; Von Neumann, John (1946). Preliminary discussion of the logical

design of an electronic computing instrument. Technical Report, Institute for Advanced Study, Princeton, NJ. In
Von Neumann, Collected Works, Vol. 5, A. H. Taub, ed., MacMillan, New York, 1963, p. 42:

5.3. 'Several of the digital computers being built or planned in this country and England are to contain a
so-called "floating decimal point". This is a mechanism for expressing each word as a characteristic and a
mantissa—e.g. 123.45 would be carried in the machine as (0.12345,03), where the 3 is the exponent of 10
associated with the number.'

http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=IEEE_floating-point_standard
http://en.wikipedia.org/w/index.php?title=William_Kahan
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Fractional_part
http://en.wikipedia.org/w/index.php?title=Logarithm
http://en.wikipedia.org/w/index.php?title=Common_logarithm
http://en.wikipedia.org/w/index.php?title=Common_logarithm
http://en.wikipedia.org/w/index.php?title=Herman_Goldstine
http://en.wikipedia.org/w/index.php?title=John_von_Neumann

Article Sources and Contributors 29

Article Sources and Contributors
Floating point Source: http://en.wikipedia.org/w/index.php?oldid=536019646 Contributors: 1exec1, 208.222.150.xxx, 47.83.107.xxx, 63.192.137.xxx, A. Pichler, AXRL, Abjad, Abovechief,
Acdman1, Ahoerstemeier, Alexius08, Altenmann, Amanaplanacanalpanama, Ambulnick, Amoss, AnAj, Anand.arumug, AndrewKepert, AndyKali, Andyroo316, AnnaFrance, Apantomimehorse,
Arnero, Arthena, Ashley Y, Ataleh, Attilios, Aykayel, Azraell, Bazzaah, Bdawson, Beland, Big Brother 1984, Bigdumbdinosaur, Bluebusy, Bluemoose, Bmearns, Bongwarrior, Booyabazooka,
Borgx, BradBeattie, Brf, Brianbjparker, CIreland, CRGreathouse, Cabyd, CambridgeBayWeather, Canwolf, Cburnett, Cdion, CesarB, Charles Matthews, Chary pr23, Chris the speller, CitizenB,
Cmdrjameson, Colonies Chris, Conversion script, Copyeditor42, Craig t moore, Cybercobra, Cyfal, Cyhawk, Damian Yerrick, Daniel.cussen, Davewho2, David-Sarah Hopwood,
David.Monniaux, Davidhorman, Dcljr, Dcoetzee, Decora, Delirium, Dendodge, Derek Parnell, Derek farn, Devine9, Dmcq, Donfbreed2, Dooywopwopbanjio345, Dulciana, Długosz, Eclipsed,
EdJohnston, Ednn, Efa, Ehudshapira, Electricmuffin11, Epbr123, Etu, Evaluist, Everyking, Evil saltine, Fang Aili, Ferritecore, Finell, Focomoso, Foobaz, Fredrik, Fresheneesz, Furrykef, Gaius
Cornelius, Garde, GermanX, Gesslein, Giftlite, Godden46, Goudzovski, Graham87, Grim23, Grr82, Gunter, Guy Macon, Hairy Dude, HappyVR, Hefiz, Hex, Highpriority, Hires an editor,
Iamsreehari, Ikanreed, Illusionz, InverseHypercube, Iseeaboar, Isilanes, Isomorphic, JNighthawk, JaGa, Jaan Vajakas, JakeVortex, Javalenok, Javier Carro, JeepdaySock, Jehan60188, Jennavecia,
JimJJewett, Jimp, Jitse Niesen, Jmath666, Joe Decker, Jonathan de Boyne Pollard, Jorge Stolfi, Jotomicron, JulesH, Justanothervisitor, KSmrq, Kbdank71, Kbthompson, Keith D, Keka, Kenahoo,
Kevin B12, Kjmathew, Kuszi, Kypzto, LaHaine, Lambiam, Lightmouse, Liviu trifoi, Lotje, Lovely idiot, Luckstev, Magioladitis, Malcolmxl5, Marioxcc, Maros, Mathiastck, Mav, Mcoupal,
Meaningful Username, Meiskam, Merope, Mfc, Mgrant79, Michael Hardy, Michael.Pohoreski, Mikiemike, Miko3k, Mild Bill Hiccup, MishBaker, Misterblues, Mitch Ames, Miterdale, Mjb,
Mr1278, Mrdvt92, Mshonle, MuhannadAjjan, N8mills, Nanshu, Nd, NickyMcLean, Nixdorf, Nutrimentia, Object01, Octahedron80, Oleg Alexandrov, OlivierM, Patrick, Paul Foxworthy,
Pbroks13, Perl87, Pete142, Philip Trueman, Photographerguy, Physicistjedi, Poorsod, Premil, Puffin, R. S. Shaw, RTC, Reedy, Repelsteeltje, Ricklethickets, Rjwilmsi, RobertG, Ross Smith NZ,
Ruud Koot, Ryk, S.Chepurin, Sanchom, Sgeo, Shanes, ShelfSkewed, Shuroo, Simetrical, SimonTrew, Simoneau, Slo-mo, SmileToday, Sns, Softtest123, Sonett72, Soyweiser, Spiel496, Sss41,
Stevenj, Stux, Subversive, Suruena, Swat671, Tabletop, Taemyr, TakuyaMurata, Tbhotch, Tbleher, Teles, That Guy, From That Show!, The Anome, Thebestofall007, Thecheesykid, Tim1988,
Tobias Bergemann, Tofergregg, Tomchiukc, Toolnut, Tsuji, Unixplumber, Unyoyega, Uriyan, Vanished user fweflklkaskwi4r592uofmoaihr, Verdy p, Vincent Lefèvre, Wanker jam, Wavelength,
Wbrameld, Wernher, WikiDao, Wikipelli, Wikomidia, William Ackerman, Wilt, Wmmorrow, Wolfrock, Wordsoup, Wrs1864, Yonidebest, Yrkoon, Zelytic, ZeroOne, Zippanova, 535
anonymous edits

Single-precision floating-point format Source: http://en.wikipedia.org/w/index.php?oldid=532529476 Contributors: 198.207.223.xxx, Aklassyguy, Anthony Appleyard, B4hand,
Brianbjparker, Cabyd, Conversion script, Coolant123, Cybercobra, Danilozf, Dicklyon, Dryguy, Dvaselaar, EncMstr, Etoombs, Foobaz, Goblin, Goodrone, Graham87, Happyuk, Harutsedo2,
JLaTondre, JakeVortex, Jshadias, KeegY, Keka, KlappCK, Kuttipapu, Lamegeek8, Lone boatman, Mandarax, MattGiuca, Maury Markowitz, Mfc, Michael Angelkovich, Michael Hardy,
Mortense, MrOllie, Qwerty112233, Radagast83, Rjstott, Sawak, ShashClp, Spacepotato, Stannered, StefanNL, Suruena, Theshadow27, UNV, Vadmium, Ylai, 103 anonymous edits

Significand Source: http://en.wikipedia.org/w/index.php?oldid=528593710 Contributors: Abdull, Aleenf1, Brianbjparker, Charles Matthews, Darkwind, Decrease789, Dexter Nextnumber,
Fresheneesz, Gah4, Gene Nygaard, GermanX, Greenstruck, Herbee, Iosif, Jamelan, Josh Parris, KSmrq, Kmoksy, Macrakis, Mfc, Michael Hardy, NYKevin, Nbarth, PigFlu Oink, Polluks,
Sandrobt, Sss41, Stevenj, Stevertigo, Thumperward, Wernher, 18 anonymous edits

Image Sources, Licenses and Contributors 30

Image Sources, Licenses and Contributors
File:Z3 Deutsches Museum.JPG Source: http://en.wikipedia.org/w/index.php?title=File:Z3_Deutsches_Museum.JPG License: GNU Free Documentation License Contributors: Original
uploader was Venusianer at de.wikipedia (Original text : Venusianer 14:13, 3. Jan. 2007 (CET))
File:Float mantissa exponent.png Source: http://en.wikipedia.org/w/index.php?title=File:Float_mantissa_exponent.png License: Creative Commons Attribution-Sharealike 3.0 Contributors:
Sss41
File:Leonardo Torres Quevedo.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Leonardo_Torres_Quevedo.jpg License: Public Domain Contributors: desconocido/unknown
File:Konrad Zuse (1992).jpg Source: http://en.wikipedia.org/w/index.php?title=File:Konrad_Zuse_(1992).jpg License: GNU Free Documentation License Contributors: A.Savin, GeorgHH,
Gildemax, Mentifisto, RHunscher, Siebrand, Vuk, 7 anonymous edits
File:William Kahan.jpg Source: http://en.wikipedia.org/w/index.php?title=File:William_Kahan.jpg License: GNU Free Documentation License Contributors: Baroc, YMS
File:Resistors in Parallel.svg Source: http://en.wikipedia.org/w/index.php?title=File:Resistors_in_Parallel.svg License: Public Domain Contributors: Inductiveload
File:Wilkinson.jpeg Source: http://en.wikipedia.org/w/index.php?title=File:Wilkinson.jpeg License: Public Domain Contributors: -
Image:Float example.svg Source: http://en.wikipedia.org/w/index.php?title=File:Float_example.svg License: GNU Free Documentation License Contributors: en:User:Fresheneesz, traced by
User:Stannered
File:Float_mantissa_exponent.png Source: http://en.wikipedia.org/w/index.php?title=File:Float_mantissa_exponent.png License: Creative Commons Attribution-Sharealike 3.0 Contributors:
Sss41

License 31

License
Creative Commons Attribution-Share Alike 3.0 Unported
//creativecommons.org/licenses/by-sa/3.0/

