
Fredo6 – Convexify Service API Page 1 / 4 27 Feb 2015

CONVEXIFY 3D SHAPES

Service API

 FREDO6 – 27 FEB 2015

1. Introduction

Convexify is a standalone script which decomposes arbitrary 3D shapes into Convex shapes.

The algorithm can however be invoked as a service from an external Ruby script, including

from within an interactive Tool.

The Convex Decomposition is implemented in the class Traductor:: SolidConvexify, which

is part of the LibFredo6 library, v6.7 and above (so FredoTools does not need to be installed).

Therefore, you should protect the invocation of the API with a section:

if defined?(Traductor::Convexify)

 …

end

The second precaution is to make sure that you have committed (or aborted) any Sketchup

operation before invoking the API. Convexify will operate within its own section:

Sketchup.active_model.start_operation "Convexify 3D Shapes"

…

Sketchup.active_model.commit_operation

If there is an error, Convexify will trigger a Sketchup.active_model.abort_operation

As a result, you can cancel the whole convexify operation afterward with a single

Sketchup.undo if it is successful.

2. Invoking Convexify

a) Creating the Convexifier

You first need to create an instance of the class Traductor::SolidConvexify. As an argument,

encoded as a hash array, you indicate the method to be invoked when the Convexify

operation is terminated:

hsh = { :notify_exit_proc => self.method("finish") }

@convexifier = Traductor::SolidConvexify.new hsh

The exit method, here called “finish”, must have a single argument: code, which can take

two value:

− :exit for normal termination

− :abort when an error occurred or the user aborted the operation

Note: it is important that you keep the convexifier instance in a class variable (so

@convexifier) because the processing is asynchronous.

Fredo6 – Convexify Service API Page 2 / 4 27 Feb 2015

b) Executing the Convex Decomposition

There is a single call with 2 parameters:

@convexifier.convexify selection, hparams

Selection is the flat list of the shape geometry you wish to process. It is therefore a list of

Sketchup entities such as Faces, Groups and Component instances. Other entities such as

Edges, Guide points, etc… can be passed too but will simply be ignored. If you pass nil,

then the current Sketchup selection will be taken, and if there is no current selection, the

whole active model.

hparams is a Hash array containing the parameters for execution. For a ‘silent execution’,

you probably wish to put the convex decomposition on a specified layer without touching the

original shapes. The specified layer will be created if it does not exist.

So the recommended setting is:

hparams = { :use_layer => true, :layer_name => “my specified layer” }

Optionally you can indicate a Tolerance for concavity as the deviation in degree versus the

flat angle. For instance, for a tolerance of 5.7 degree, :tolerance_concave => 5.7

If you wish to replace the original components, then just call the convexify method without

a second argument or with { :use_layer => false }.

Note: If the processing takes long, a progress panel will be displayed, allowing the user to

visualize the progression, but also to interrupt the operation.

c) Inspecting the resulting Convex Decomposition

When the processing is completed, your exit method (here finish()) is called with the

parameter code indicating success or error / abort.

def finish(code)

#Handling error and abort cases

if code == :abort

 ….

 return

end

#Inspecting the convex decomposition

Proceed with inspection, as explained in the following paragraphs

end

The results of the convex decomposition is provided as a list of Compact Grouping

structures. A Compact Grouping represents a piece of the original selection including faces

which are ‘connected’. So an original group or Component Instance may correspond to

several Compact groupings.

This selection corresponds to 8 Compact

Groupings, out of

− A set of Faces at top level

− 3 Groups

− A Component instance embedding

geometry and subgroups

Fredo6 – Convexify Service API Page 3 / 4 27 Feb 2015

A Compact Grouping includes the correspondence between the original shapes and their

convex decomposition.

Internally it is described by

GroupingInfo = Struct.new :faces, :comp, :tr, :lst_convex, :parent

Typically, you would go through this information within a loop:

@convexifier.grouping_info.each do |grouping_info|

 …do what you have to do

end

Here is a description of the field of the GroupingInfo structure:

Field Description

:faces List of the original faces making up the original Compact grouping.

These faces are normally valid since the original selection is untouched.

:comp Original group or component instance containing the Faces. comp will

be nil if the faces were at the top level of the active model.

:tr Top-level transformation of comp, that is, the transformation of the

internal <comp> coordinates to the active model. This is mainly useful for

drawing in the viewport.

:lst_convex List of the Convex Groups corresponding each to a convex shape of the
convex decomposition. If the compact grouping was originally convex,

then this is list is reduced to one element (which is a copy of the original

faces of the compact grouping)

:parent Direct parent of the Convex groups. All convex groups in lst_convex

are ‘brothers’, i.e. at the same hierarchical level. Note that when the

Convexify mode is to replace the original selection, then parent is equal to

comp.

Normally, with the above information, you should be able to associate the original shapes to

their convex decomposition, as well as to access the geometrical coordinates of the convex

shapes created.

Note: the time of calculation, in second, is returned by a call to the method

@convexifier.calculation_time.

d) Forgetting about the Convexify operation

Once you have all the information, you can restore Sketchup in its original state by simply

calling Sketchup.undo.

Fredo6 – Convexify Service API Page 4 / 4 27 Feb 2015

3. Summary

To recap on the usage of the Service API, here is the condensed code that you shoud adapt to

your need. This assumes that:

− you have checked that Traductor::SolidConvexify is defined

− you do not have a pending Sketchup operation.

− <selection> contains the list of original shapes in the parameters or is nil for the

current Sketchup selection.

a) Invoking the Convexify operation

Using a separate layer

hsh = { :notify_exit_proc => self.method("finish") }

@convexifier = Traductor::SolidConvexify.new hsh

hparams = { :use_layer => true, :layer_name => “my specified layer” }

@convexifier.convexify selection, hparams

Replacing the original shapes

hsh = { :notify_exit_proc => self.method("finish") }

@convexifier = Traductor::SolidConvexify.new hsh

hparams = { :use_layer => false }

@convexifier.convexify selection, hparams

b) Post-Calculation method to review the results

def finish(code)

 #Handling errors or abort

 if code == :abort

 …probably report the error and stop

 end

 #Associate the original shapes and their convex decomposition

 @convexifier.grouping_info.each do |grouping_info|

 …use the GroupinInfo fields to build the mapping

 end

 #Restoring the original Sketchup state (optional)

 Sketchup.undo

end

