FREDOBATCH

EXECUTING TASKS ON A SET OF FILES

VERSION 1.2 —- DECEMBER 2024

BY FREDOG6

Job: PDF Nice Gallery n

Job: PDF Nice Gallery

Job Name: |PDF Nice Gallery

Description: ‘Generate a PDF from a set of Sketchup models

File Sets and File Lists: 1 Tasks: 1
O - Model Gallery -
4 For Gallery ‘/ ) i Description of Task 1 / 0
7 y
Add File Sets / Lists Add Tasks
Files to be processed in the Job: 4 ANV
& C:/Google Drive/Ruby/Ruby/Models g -~
law /Fredo6 Models Q
§p Saxophone Body.skp
& /FredoBatch Q
& /For Gallery =
§ Vasque skp -
Hhe X% Close Save Job | Launch Job

Al actions support Undo (Ctrl-Z) and Redo (Ctrl-Y)

FredoBatch is an Extension for SketchUp 2017 and above.

The home page of FredoBatch is on the Sketchucation web site at:

https://community.sketchucation.com/post/1611210

Fredo6 — FredoBatch Page 1/36 v1.2 — 06 Dec 2024



Contents

1. Introduction and Main PrinCiples .......ccccriemciiieiiieieiiecrteeerreeerre e seene e snnnesennneesnnnens 3
2. File Man@ger...cuuieeeiieeciiiiiirenctreecetenerennesrnnsesansssssnssesenssssensessnnssssensesssnssssnsssennssnes 6
D B 1 =3\, 1o Ta To o T=] oo [ Lo o F PP PPRUTRPN 6
D =3 Ny <SSR 7
D R o =3 Y =1 <SSP 8
T - (1Y T F= T LT OO 10
2 B 017 oY1 o Y P 11
I o T [0 o K TSP 12
A.  JOD IVIANQGEN .....eeeeiieeiieecreeectteeereaeerenneesanneseensessensessassesennsesenssnsenssssensessnnsnesnnnnnns 14
i B O =To [ =30 oo l o 1 Ao I Lo ] 2 BTSRRI 14
3 R o TV Tl T e I Lo < N USSR 16
B RN o) o 3 (-Tol VL o ¢ PSR S 16
4.4. Reviewing the JOb EXECULION SUMIMQIY ........cueeeeeeiueeeeesieeeeeeeireeeaesissaeeeestassasssssssssesessessssenees 17
VNN Ho) || 21s [ol QN Lo ] < NP 20
5. Designing @ CUSEOM TaSK ..c..ciieeiiieeuiiireiiieeieiranerennerenneereeneerenseernnssssenseesensessensesnanans 21
5.1, TASK MEENOA NGIMES ......eeveeeeeieeeiieeesie ettt e e ettt ae e s ttae s st e e se st ae e s s ststaaessassaaessasesaasssssaeeens 21
5.2, TASK MEENOA ArGQUIMENTS ... ee ettt e eetee e tttae e e e ttaaa e e e astteaesasaaeaeeeassaaesesseaaeesssseann 22
N R = 4 o T gl o ool |2 o RSP UPPI 22
I o LY 6o T 1 (=3 OSSP 23
5.5. Specifying PArameters fOr the TASK ............ccccueecueeeieeeecieeeieeeieeeseeeesteseetaesesaesssasestseeesraaaesees 24
6. Examples of CUSEOM TasKsS......ccivveuiiiiimmmeiiiiiiinniiiiinnmiiiiimismimiessamse 26
6.1. Example 1: Convert DWG/DXF files to Sketchup mOdels.............cceceueevvecveevvesveiiesieiiearvnnnn, 26
6.2. EXAMPIE 2: StANAAIT SCONES ......ovveeetieiieeiiieeetee ettt ee ettt e ettt e e e s st a e e staaesstaaessssssaessssses 28
6.3. Example 3: Model Gallery (Simple VErsion) ...........ccccueecvueeecieesiieeeiiiessieeesieseestesssieseeissasssseeans 31
6.4. Example 4: Model Gallery (advanced Version) .............uuucccueeeeeceeeeeieieeeisiieseeesieeeesiiisesesesiaens 36

Fredo6 — FredoBatch Page 2/36 v1.2 — 06 Dec 2024



FREDOBATCH

Executing Tasks on a Set of Files

1. Introduction and Main Principles

FredoBatch executes a set of tasks on a set of files:

e a Task is based on Ruby code, with a top method as an entry point. Task can be
built-in (provided with FredoBatch) or custom (configured by the user).

e a Set of Files is specified as a combination of lists of files (File Lisf) or open set of
files with wild card and filtering on names and extensions ( File Sef).

e a Job is the combination of sets of files and tasks. This is what is executed by

FredoBatch.

A job is created and then launched via the Job Manager.

For instance, the job below (Purge and Convert)
e applies to a set of Sketchup models (.skp files) contained in a File List (Cloud
Files) and a File Set (Shared Models). ..

e ...two tasks: Purge unused and Convert to old SU versions.

Job 3 (New Job)

Purge and Convert

Name: |Purge and Convert

Description: |F'urge unused and convert to older SU versions

File Sets and File Lists: 2 Tasks: 2
[[j] i - Purge unused on Models
4 Cloud Files 4 & | Perform a purge-unused on SketchUp 7 Q
[® | shared Model ook
51 | Bonchpmimpim ey | b it |
% &
Add File Sets / Lists Add Tasks
Files to be processed in the Job: 95 AV
& C:/Google Drive/Ruby/Ruby/Models/Delaunay 2
§ Cloud simple - SU2018.skp
§ Cloud simple.skp
& C:/Google Drive/Ruby/Ruby/Models/Curviloft 2
§ Curviloft - Bug 24.skp -
Hhe ¥ Close Save Job Launch Job

All actions support Undo (Ctri-Z) and Recdo (Ctrl-Y)

Fredo6 — FredoBatch

Page 3/36

v1.2 — 06 Dec 2024



When you launch the job, you are prompted to specify parameters for each task:

§) Purge Unused = [] X

Purge Unused

Select the scope of the Purge-Unused

Materials:
Components:
Tags: [

Styles:

:) c Cancel Assign Parameters

@ Convert to Sketchup Versions = | X

Convert to Sketchup Versions

Converted files will be created in a subfolder of the current directory of the source file and with a suffix

0Osu3 Osu4 (Jsus Fasue E@sur Esus [@su2013 (JSuU2014 (JSU2015

Sketchup Versi : —
Zete it [JsuU2016 [(1SU2017 [JSU2018 ([JSU2019 [ SU2020 [ Above SU2021

suffix: |_SUSV§ | S for v

Global Directory: C/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old Full directory path

2 Cancel | Assign Parameters

Then a Progress dialog is displayed:

: Processing Task on File
: Formes !Blue!.skp
in: C:/Google Drive/Ruby/Ruby/Models/FredoConnect

: Convert files to old SU versions h.

Converted to SU6 as Formes !Blue!_SUB.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

Fredo6 — FredoBatch Page 4/36 v1.2 — 06 Dec 2024



Finally, the process is summarized in the Results dialog, with the details of execution:

@ JOB Job Purge and Convert: Processing Results = Ol K

V Files processed: 93 SUCCESS 192.010 s

File Processed Duration

Cloud simple - SU2018.skp 03165 =~

C#Google Drive/Ruby/Ruby/Models/Delaunay

K|

Cloud simple.skp 0.234s

C+Google Drive/Ruby/Ruby/Models/Delaunay

K|

Bean local by Fredo__cp2313__.skp 0.407 s

CA/Google Drive/Ruby/Ruby/Models/FredoConnect
Backup File 0.008 s
Opening File 0175s

Purge unused on Models 0.002 s
Purged Component Definitions: 0

Purged Materials: 0
Purged Styles: 0

&

Convert files to old SU versions 0.050 s

— Converted to SU6 as Bean local by Fredo__cp2313__ SU6.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

Converted to SUT as Bean local by Fredo__cp2313__ SUTV.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

Converted to SU8 as Bean local by Fredo__cp2313___ SUS8.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

— Converted to SU2013 as Bean local by Fredo__cp2313___ SU2013.skp
& in C./Goaogle Drive/Ruby/Ruby/Models/FredoBatch/SU old

Saving File 0172 s

Blue Final.skp 0.400s

CA/Google Drive/Ruby/Ruby/Models/FredoConnect

Rollback Job Done

The Results dialog shows errors in the execution if some happened. It also allows to
rollback the job if needed.

Tasks, Set of Files, Jobs are managed by FredoBatch via dedicated dialogs. This
information is stored on the computer independently of models and versions of Sketchup.

FredoBatch X

REE

L Menu for
J File Manager Other commands

Job Manager Task Manager

Fredo6 — FredoBatch Page 5/36 v1.2 — 06 Dec 2024



. File Manager

Files can be specified in 2 ways:

1) File List: this is a static specification of files where you designate each file

individually. Files can be in distinct directories.

2) File Set: this is a dynamic specification of files by combining a directory and a
set of filters on the file names and extensions. This specification is evaluated at
execution of the job, so it may contain files which were not present at the time you

defined the File Set.

2.1. File Manager dialog

The File Manager dialog shows the File Lists and File Sets defined in your

environment:

File Set and File List Manager

File Sets and File Lists
By Name File Sets: 1 File Lists: 1
File List [D]
(2files) || 5 |CloudFiles 7 (%]
File Set &) . Shared Models |
[91 f”ES) 91 | Bunch of models used in FredoConnect *//J.—[i] /,a
—— ,/",I ///’
Eit—
Duplicate Delete
S & > New File List... New File Set... Close
All actions support Undo (Ctrl-Z) and Redo (Ctrl-Y)

Each File List and File Set is given a name and short description, which will be

displayed when you select them for a Job.

To create a File List or a File Set, click on the respective buttons at the bottom of

the dialog.

To edit a File List or a File Set, double-click click on the Edit icon on the

corresponding row.

Fredo6 — FredoBatch Page 6 /36

v1.2 — 06 Dec 2024



2.2. File Lists
The dialog to create or modify a File List is as follows:

Editing File List: Cloud Files n

File List

Name: |Clnud Files ‘

Description: | ‘

Shrink / Expand
the Directory details

Files currently in the File List: 4 Add File AV

& C:/Google Drive/Ruby/Ruby/Models/Delaunay 2
§ Cloud simple - SU2018.skp [x]
§ Cloud simple.skp [x]
& C:/Google Drive/Ruby/Ruby/Models/Curviloft 2
§ Curviloft - Bug 24 skp [x]
§ Curvitest skp [x]

«<——— Remove the file

S Cancel Save File List
Al actions support Undo (Ctrl-Z) and Redo (Ctrl-Y)

To add files, click on the Button ‘Add File’. You are prompted to select the path to
the file(s), by browsing to a directory and selecting one or several files in this

directory.
@ Add Files to File List Cloud Files X
L > ThisPC > OS(C:) » Google Drive > Ruby > Ruby > Moedels > Curviloft ~ Q| | Search Curviloft »p
Organize ~ New folder - @
~
@ OneDrive - Persc ™ Name Date modified Type Size -
4 Freda Six & Curviloft - alexpacio 2.skp 09-May-24 14:19 SketchUp 2022 110 KB
= This PC b1 Curviloft - alexpacio SU2022.skb 09-May-24 14:44 SKB File 107 KB
& 3D Objects & Curviloft - alexpacio SU2022.skp 09-May-24 15:22 SketchUp 2022 108 KB
[ Desktop &] Curviloft - alexpacio.skb 09-May-24 10:40 SKB File 103 KB
@ Documents & Curviloft - alexpacio.skp 09-May-24 10:42 SketchUp 2022 107 KB
& Downloads e'j Curviloft - Bug 22.5kb 09-May-24 15:22 SKB File 108 KB
b Music & Curviloft - Bug 22.5kp 09-May-24 19:06 SketchUp 2022 106 KB
&) Curviloft - Bug 24.5kb 09-May-24 15:22 SKB File 108 KB
& Curviloft - Bug 24.skp 09-May-24 19:06 SketchUp 2022 114 KB
E Videos — 2 = =
] Curvitestskb 23-Feb-22 13:37 SKB File 461 KB
L= RS & Curvitestskp 24-Feb-22 16:00 SketchUp 2022 467 KB
& Google Drive < & traces bug 2022.0xt 09-May-24 23:27 Text Document 1KB o
File name: ‘"Curvitest.skp" “Curviloft - Bug 24.skp” ~

Fredo6 — FredoBatch Page 7/36 v1.2 — 06 Dec 2024



2.3. File Sets

The dialog to create or modify a File Set is as follows:

Editing File Set: Shared Models B
File Set
Name: Shared Models
Description: Bunch of models used in FredoConnect
(" |Directories: 1 Add Directories
contributing directories <~ | ® C:/Google Drive/Ruby/Ruby/Models/FredoConnect m @ X
\ £
i i H ) O AnyFiles Eskp Olayout Ot [Oxis®
Filter on file extensions . ¢, .cions: S p Olay O
skp

S

Filter on file name  Fiter™

. \ Fil OuT:
(include or exclude) '\ ™"
| Files currently in the File Set: 91 AV
|EpC:!Googi'eC‘ Ruby/Ruby/Models/FredoC: 91

§ Bean local by Fredo__cp2313__ skp

§) Blue Final skp

D Blue Frigate skp

$§ Blue Fumniture. skp

$ Blue MyShapes.skp

$ Blue NiceShapes - original skp

$ Blue NiceShapes skp

D Blue Test skp =

bt I Cancel Save File Set
All actions support Unde (Ctri-Z) and Redo (Ctri-Y)

The specifications are based on:

e One or several contributing directories, which you select by browsing your
computer.

o A list of allowed file extensions typed in the field (separated by space, comma
or semi-column). For instance, the extension filter below allows both .skp and
.dxf files, excluding all other extensions.

[] Any Files skp [(Jlayout (bt [Jxis*
|skp, dxf

Extensions:

Note that you can use wildcards in the filter (ex: xIs* will catch most Excel
files).

o Filters on file names, cither to include (IN) or to exclude (OUT). For instance,
the name filters below keep all files whose name begins with B or C and does
not contain 3.

Filter IN: [ B ©Oo ¢ 0
Filter OUT: 3 0O

Fredo6 — FredoBatch Page 8/36 v1.2 — 06 Dec 2024



Note that you can combine filter specifications with and-conjunctions (using
‘&’) as well as regular expressions (enclosed in /), if you are familiar with it.
For instance, the filters below keep all files whose name begins with C and
ends with 2 digits and also contain the digit 5.

Filter IN: [ NAC.Hd\d\Z/ & *5 Q)
Filter QUT:

Files currently in the File Set: 1

= C:/Google Drive/Ruby/Ruby/Models/FredoConnect
§) Connect Essai 55.skp

The file shown are those that are present on your computer and respect the filtering at
the time of creation or modification of the File Set. When you launch a job including
the File Set, the files are dynamically recalculated.

Fredo6 — FredoBatch Page 9/36 v1.2 — 06 Dec 2024



3. Task Manager

A task corresponds to the action to be executed based on a file as input. For instance,
Purge Unused over Sketchup models.

The task may not necessarily act directly on the file itself, but instead use the file to
perform other actions. For instance, a task ‘Convert to skp’ executed on DXF files, would
take DXF files and convert them to Sketchup models. Likewise, the files could be
instructions, say specifications of geometry in a CSV or TXT files, to perform
construction of shapes in Sketchup.

In FredoBatch, there are 3 categories of tasks:
Bﬂ 1) Built-in Tasks: they are provided by FredoBatch.
Cﬂ 2) Custom Tasks: they are provided by the user, based on a top method in Ruby.

:”4 3) Param Tasks: these are instances of Built-in tasks or Custom Tasks where
' parameters are pre-selected, so that there is no prompt for parameters at execution

of a job. For instance, from the Built-in Task Purge Unused, you can derive a

Param task which will only purge materials and styles (but not components).

The Custom Task Manager dialog allows to create and manage Custom Tasks and
Param Tasks:

Custom Task Manager n

Custom and Param Tasks
By Name Tasks: 7

TTIVETT & ST UT DYTOTDAT TIT T NETCITO T U GeTS (ST UM TG ToTf; Samme

' basename) 7 Q-
Script: Baba.rb
Top Method: MyModule.convert_dxf_dwg_to_skp [2 arguments]

; My Task

‘ This is test task Vs
l. | Script: Baba.rb

Top Method: Baba.top (does not exist)

z Purge unused on Models 0001228
&4 | Perform a purge-unused on SketchUp models V4 Q
Source Task: Purge unused on Models

" Convert files to old SU versions 1
& | Convert Sketchup files to old versions rd [}
Source Task: Convert files to old SU versions

Tata Baba

h Description of Task 4 7 r
m
! 0

Script: not specified
Top Method: Baba.top (does not exist)

5 ¢ R G New Param Task... New Custom Task... Close
All actions support Undo (Ctri-Z) and Redo (Ctrl-Y)

Fredo6 — FredoBatch Page 10/ 36 v1.2 — 06 Dec 2024



cﬂ 3.1. Custom Tasks

Custom Tasks are specified by a top method in a Ruby script.

So, creating custom tasks requires that you are familiar with Ruby, or are instructed
by someone who is familiar with Ruby. Section 5 below gives more detail on how to
script a custom task for simple and complex cases.

The creation and edition of Custom Tasks is done via the Custom Task Editor
dialog:

§) Edit Custom Task — O X

Edit Custom Task

Enter the parameters for the Custom task

Task Identification |

Category: General Purpose v

Name: ‘My Task ‘

Description: ‘ Description of Task 3 ‘

Script Properties |

.. Baba.rb 4,
Ruby File: - toogle Drive/Ruby/Ruby/Models/FredoBatch L

Top Method: ‘ Baba.top ‘

Filter on SU versions and Files by allowed extensions \

Allowed extensions

File Extensions: ‘skp | separated by space
(ex: skp xmi)
SU Versions:  SU2020 or above - Required SU

Version or above

Task Processing

Sketchup Files: Open Sketchup .skp file before running the task

Backup: Backup files for possible restore

b Y oo Cancel Save Custom Task

The Custom Task is given a Category!, a Name and a Description.

\ Task Identification |

Category: General Purpose ~

Name: |My Task ‘

Description: |Description of Task 3

Script Properties specifies the top method entry (here Baba.top) and optionally a
Ruby script file (here C:/Google Drive/Ruby/Ruby/Models/FredoBatch/Baba.rb)
which implements this top method. Note that the Ruby script file is necessary only if
the code for the task is not already present in your environment. For instance, some
plugins may expose top methods which are compatible with FredoBatch, in which
case you do not need a script file.

\ Script Properties |

.. Baba.rb 4 E
Ruby Flle: ¢ /Google Drive/Ruby/Ruby/Models/FredoBatch &

Top Method: |Baba.top |

! Categories are for a future categorization of tasks, not effective in the current version of FredoBatch.

Fredo6 — FredoBatch Page 11 /36 v1.2 — 06 Dec 2024



3.2.

File extensions and Sketchup Versions can also be specified. Here, the task acts
only on Sketchup models, created in SU2020 or above. This means that any other
files will be skipped at execution of the task and Sketchup files with version <
SU2020 will also be skipped. If you leave these fields empty, there is no restriction.

Allowed extensions

File Extensions: |skp | separaled by space
(ex: skp xmi)
SU Versions: | SU2020 or above o i e

Version or above

The section Task Processing is more related to the Job execution.

o For Sketchup files, you indicate whether FredoBatch opens .skp files or not
before processing the task.

e Backup should be checked whenever the files are going to be modified by the
task. This enables an automatic backup of files before processing and therefore
a possible rollback afterwards.

Task Processing

Sketchup Files: Open Sketchup .skp file before running the task

Backup: Backup files for possible restore

Param Tasks

Param Tasks are derived from existing Built-in Tasks or Custom Tasks, with a static
specification of parameters.

To create a Param Task, click on the button New Param Task... in the Task
Manager dialog. You then need to select a task, Built-in or Custom:

@ Selection of Tasks (Custom, Params and Built-in) e O x

Please pick one or several tasks

Tasks: 5

B Convert files to old SU versions

' Convert Sketchup files to old versions

;. Model Gallery
Description of Task 1

B Purge unused on Models

‘ Perform a purge-unused on SketchUp models

g‘ Purge unused on Models (all items)
Purge unused on Models (all items)

¢ Standard Scenes

. Create Standard Scenes in Sketchup models

/< Cancel ./ Customize Task

Fredo6 — FredoBatch Page 12 /36 v1.2 — 06 Dec 2024



After selecting the base task (here the Built-in Task Purge Unused on Models), you
get a dialog which includes the parameters of this base task populated by their default
values:

@ New Param Task i [ X

New Param Task

Enter the parameters for the Param task

Source Task: Purge unused on Models

Task Identification |

Name: |Param Purge |

Description: |Perf0rm a purge-unused for Materials and Styles |

Purge Unused |

Materials:
Components: [
Tags: [
Styles:
s il e Cancel  Create Param Task

As for any task, you must give it a name and description.

Then, you give values to the parameters listed in the dialogs (here, 4 flags as
checkboxes). These parameters will be registered and associated with the Param task.

The Param task is now visible in the Task Manager and can be used in a Job.

Custom Task Manager n

Custom and Param Tasks
By Name Tasks: 7

Param Purge Z
&¥ | Perform a purge-unused for Materials and Styles / 0
Source Task: Purge unused on Models

Model Gallery

Description of Task 1
Script: Baba.rb Vg 0

Top Method: MyModule.meodel_gallery [2 arguments]

Convert DWG/DXF to SKP
Convert a set of DWG/DXF files to Sketchup models (same directory, same

i basename) v (%)
Script: Baba.rb

Top Method: MyModule.convert_dxf_dwg_to_skp [2 arguments]

S ¥ 5 New Param Task... Mew Custom Task... | Close
All actions support Undo (Ctrl-Z) and Redo (Ctrl-Y)

You can later change these values by editing the Param task.

Fredo6 — FredoBatch Page 13 /36 v1.2 — 06 Dec 2024



4. Job Manager

A Job is specified as the association of files and tasks.

Jobs are created, launched and edited via the Job Manager dialog.

Job Manager n
Jobs

By Name Jobs: 3
Job 2
Description of Job 2 / 0
Job 1

@ Description of Job 1 7 0
Job Purge and Convert

® Purge unused in files and convert to older SU versions '4 9

5S¢ R New Job... Close

All actions support Undo (Ctrl-Z) and Redo (Ctri-Y)

(® If the Launch icon, located in the first column, is displayed, you can directly launch the

job by clicking on the icon.

i Otherwise, the Warning icon indicates that there is a problem with the job, either related
to the tasks (missing or invalid) or files (no files).

4.1. Create and Edit a Job

To create a Job, click on the button New Job... To modify a Job, double-click on
the job row or click on its Edit icon. In both cases, the Job Editor dialog will be

displayed:

Purge and Convert

Purge and Convert

Name: ‘Purge and Convert

Description: ‘Purge unused and convert to alder SU versions

File Sets and File Lists: 2 Tasks: 2
[D] ) “ || %ge | Purge unused on Models =
4 Cloud Files / 0 . Perform a purge-unused on SketchUp models
1 i : .
@ | Shared Models 7 W | Coevert Shmtcbmp o o b vormions
g4 | Bunch of models used in FredoConnect B =
d “
Add File Sets / Lists Add Tasks
Files to be processed in the Job: 95 AV
& C:/Google Drive/Ruby/Ruby/Models/Delaunay o -
$ Cloud simple - SU2018.skp
$ Cloud simple.skp
& C:/Google Drive/Ruby/Ruby/Models/Curviloft 2
§ Curviloft - Bug 24 skp
@ Curvitest skp 5
S Close = Save Job | LaunchJob
All actions support Undo (Ctril-Z) and Redo (Ctrl-Y)
Fredo6 — FredoBatch Page 14/ 36 v1.2 — 06 Dec 2024



In addition to the name and description of the Job, you need to provide:
o Files: in the left list box, add File Lists and File Sets.

@ Selection of File Sets and File Lists 5 O =

Please pick one or several file sets or file lists

[J File Sets and File Lists: 3

o N
4

J Cloud Files

B} FileSet1
720 Description of FileSet 1
@} shared Models

1 Bunch of models used in FredoConnect

]

]

X Cancel / AddFile Sets
5

You can possibly review and even modify these definitions. The list at the
bottom of the dialog will show the files that will participate in the Job
execution.

e Tasks: in the right list box, add tasks: Built-in, Custom and Param tasks.

@ Selection of Tasks (Custom, Params and Built-in) T O *

FPlease pick one or several tasks
[J) Tasks: 10

Convert DWG/DXF to SKP
Convert a set of DWG/DXF files to Sketchup models (same directory,

“

same basename)

Convert files to old SU versions
Convert Sketchup files to old versions

&

Convert files to old SU versions 1

Convert Sketchup files to old versions

Model Gallery

Description of Task 1

My Task -

L}

0| 0|00
v

w

7< Cancel ./ Add Tasks

You can possibly review and even modify the tasks.

IMPORTANT: the order of tasks does matter for the job execution. To
remove a task and place it at the end of the list, add it again.

Fredo6 — FredoBatch Page 15/36 v1.2 — 06 Dec 2024



4.2. Launching a Job
You can launch a Job from the Job Manager dialog or the Job Editor dialog.

If the job was just modified during the selection process, you are offered to save it
either under the same name or a new name:

@ Save Job before Launch s O X

Save Job before Launch

Save Job

Job Name:

5 e Cancel Save Job

4.3. Job Execution

Before the actual execution of the job, you are prompted to enter the parameters of
the tasks if they have some:

3‘@ Purge Unused o ] *

Purge Unused

Select the scope of the Purge-Unused

Materials:

Components:
Tags:
Styles:
o L Cancel  Assign Parameters

Then, the job is executed on the specified files. A Progress dialog is displayed:

Processing Task on File - Curvitest.skp =

: Processing Task on File

: Curvitest.skp
in: C:/Google Drive/Ruby/Ruby/Models/Curviloft
: Convert files to old SU versions

Converted to SU8 as Curvitest_SUB.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

In case errors are encountered, they are indicated in the Progress dialog.

Processing Task on File - Animator rubik_cube Enea - 5 - SU14.skp n

: Processing Task on File
Animator rubik_cube Enea - 5 - SU14.skp
in: C:/Google Drive/Ruby/Ruby/Models/Animator Beta

Convert files to old SU versions

Converted to SU8 as Animator rubik_cube Enea - 5 - SU14_SU8.skp
in C/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

Fredo6 — FredoBatch Page 16/ 36 v1.2 — 06 Dec 2024



You can pause or stop the execution by clicking on the Stop button. A confirmation
message is displayed:

@ Message = O X

Stop the processing?
- Rollback: Files will be restored from their backup state before processing
- Hard Stop: Job will stop with no further action

Resume Job Hard Stop Rollback Job

You have 3 options:
e Resume Job: just resume the job execution
e Hard Stop: FredoBatch will simply stop and exit from the job execution.

¢ Rollback Job: this option will restore the files to their original state. If the
tasks support it, they will also restore the initial environment. This is the
recommended option.

4.4. Reviewing the Job Execution Summary

At the end of the job execution, the Execution Summary dialog is displayed:

@ JOB Job Purge and Convert: Processing Results = O X
V Files processed: 5 SUCCESS 1474 s
File Processed Duration
Cloud simple - SU2018.skp 0.084s =~
|
C/Google Drive/Ruby/Ruby/Models/Delaunay
Cloud simple.skp 0046 s
]
C/Google Drive/Ruby/Ruby I
Curviloft - Bug 24.skp 0.333s
C/Google Drive/Ruby/Ruby/Models/Curviloft
Curvitest.sk 0196 s
C:/Goagle Drivesf e
Connect Essai 55.skp 08156s
Rollback Job Done

It indicates the number of files processed and the global status: Success or Error.

If there are some errors, corresponding file rows are displayed in red:

@ JOB Job Purge and Convert: Processing Results = O X

V Files processed: 24 19 Errors 5.954 s
File Processed Duration

Cloud simple - SU2018.skp 0131s =~
C:/Google Drive/Ruby/Ruby/Models/Delaunay
Cloud simple.skp 0.051s

|

C:/Google Drive/Ruby/Ruby/Models/Delaunay

Curviloft - Bug 24.skp 0.316s
C:/Google Drive/Ruby/Ruby/Models/Curviloft

Curvitest.skp 0.198s
C:/Google Drive/Ruby/Ruby/Models/Curviloft

annact Essai_55.s_kp N 0.781s
G:/Google Drive/Ruby/Ruby/Models/FredoConnect

Ty Animator rubik_cube Enea - 2 - SU15.skp 0234s
C/Google Drive/Ruby/Ruby/Models/Animator Beta

p Animator rubik_cube Enea - 2 - SU16.skp 0202s
C/Google Drive/Ruby/Ruby/Modelz/Animator Beta

p Animator rubik_cube Enea - 2 - SU17.skp 0434 s
GC/Google Drive/Ruby/Ruby/Models/Animator Beta

-
Rollback Job Done

Fredo6 — FredoBatch Page 17 /36 v1.2 — 06 Dec 2024



For each file row, you can get a detail of the execution by clicking on the row to
expand it (double click to expand / shrink all rows).

@ JOB Job Purge and Convert: Processing Results = O =
V Files processed: 5 SUCCESS 1.474 s
File Processed Duration
Curvitest.skp U190
C:/Geagle Drive/Ruby/Ruby/Models/Curviloft
(C:c:gnnec.?t Essafiﬁﬁ.ékp N ) 0.815s
/Google Drive/Ruby/Ruby/Models/FredoConnect
Backup File 0.002s
Opening File 0.220s
Purge unused on Models 0.002 s

Purged Component Definitions: 0
Purged Materials: 0

Purged Styles: 0

Purged Tags: 0

Convert files to old SU versions 0.287 s
% Converted to SUG as Connect Essai 55_SU6.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old
o Converted to SUT as Connect Essai 55_SU7.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old
o Converted to SU8 as Connect Essai 55_SU8.skp
5] in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

Converted to SU2013 as Connect Essai 55_SU2013.skp
5] in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

Saving File 0305s

Rollback Job Done

For files which are in error, file rows are displayed in Red.

@ JOB Job Purge and Convert: Processing Results = O X

V Files processed: 24 19 Errors 5.683 s
File Processed Duration

mﬂﬁm-:-aulmsnp o "
C./Google Drive/Ruby/Ruby/Nodels tor Beta

e Animator rubik_cube Enea - 2 - SU18.skp 0227 s
C:/Google Drive/Ruby/Ruby/Models/Animator Beta
Backup File 0.003 s
Opening File 0076 s
"®* Purge unused on Models 0.000 s

undefined method "+ for nil:NilClass m

Convert files to old SU versions 0.148 s

-~ Converted to SUB as Animator rubik_cube Enea - 2 - SU16_SU6.skp

i in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

— Converted to SUT as Animator rubik_cube Enea - 2 - SU16_SUT.skp

& in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

— Converted to SU8 as Animator rubik_cube Enea - 2 - SU16_SU8.skp

in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

= Converfed to SU2013 as Animator rubik_cube Enea - 2 - SUT6_SU2013.skp
in C:/Google Drive/Ruby/Ruby/Models/FredoBatch/SU old

am _ Animator rubik _cube Enea - 2 - SU17.skp 0.230s ¥

Rollback Job Done

Fredo6 — FredoBatch Page 18 /36 v1.2 — 06 Dec 2024



You can get details on the error, by clicking on the button a0 se0s. Depending on
the error (Ruby or others), you get the technical information about the source of the
error.

§) SketchUp X

ERROR in Processing file: Animator rubik_cube Enea - 2 - SU16.skp
| in: C:/Google Drive/Ruby/Ruby/Models/Animator Beta
TASK: Purge unused on Models

undefined method ™+ for nil:NilClass

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_FredoBatch/
FredoBatchDo_01.rb:190:in "do’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_FredoBatch/
FredoBatchProcessor.rb:445:in “call’

- C/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_FredoBatch/
FredoBatchProcessor.rb:445:in “step_task_notify’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_FredoBatch/
FredoBatchProcessor.rb:635:in “step_processing'

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_FredoBatch/
FredoBatchProcessor.rb:1153:in ‘param_dialog_callback_exec'

- C//Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_FredoBatch/
FredoBatchProcessor.rb:1136:in ‘param_dialog_callback’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_Lib6ChromiumWdlg.rb:2460:in “call’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_Lib6ChromiumWdlg.rb:2460:in "master_callback’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_Lib6ChromiumWdlg.rb:2225:in “j_action’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_LibeéChromiumWdlg.rb:2184:in “j_callback’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_Lib6ChromiumWdlg.rb:2170:in "block in j_dispatch’

- C:/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_Lib6Chromiumwdlg.rb:2162:in "each’

- C/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_Lib6ChromiumwWdlg.rb:2162:in “j_dispatch’

- C/Google Drive/Ruby/Ruby/AA_SCRIPT_20/Fredo6_!LibFredo6/
body_Lib6ChromiumWdlg.rb:1439:in "block in create_dialog'

OK

Fredo6 — FredoBatch Page 19 /36 v1.2 — 06 Dec 2024



4.5. Rollback Job

After the execution of a job, you have the option to roll back the job, even if it is
successful.

You will first get a confirmation message:

S@ Message = (] X

o Roliback Job?
Files will be restored from their backup state before processing

Cancel Confirm Rollback

Then the rollback will be executed, with a Progress dialog:

Rollback File - Connect Essai 55.5kp n

STEP: Rollback File
FILE: Connect Essai 55.skp

in: C:/Google Drive/Ruby/Ruby/Models/FredoConnect
TASK:

At the end of the rollback, you get a Summary dialog detailing how the Rollback
was processed (success or error):

S-@l JOB Job Purge and Convert: Processing Results = O X
VvV Files processed: 5 Rollback 0.014 s
File Processed Duration

Done

Fredo6 — FredoBatch Page 20/ 36 v1.2 — 06 Dec 2024



5. Designing a Custom Task

This section is more technical and requires that you are familiar with Ruby and the
Sketchup API.

A Custom Task requires the specification of:
1) A Top Method, written in Ruby.

2) Optionally, a Ruby script file, which includes this top method, unless this top
method is already present in your Sketchup environment (in general, coming from
an extension). FredoBatch will ensure that the specified script file is loaded in the
environment before processing the task.

| Script Properties |

. Babarb [4E
RUDViETe: C:/Google Drive/Ruby/Ruby/Models/FredoBatch < .

Top Method: |Baba_my process x|

5.1. Task Method Names

The Top Method name must be specified with its complete path from the top level
of Ruby.

In the example above, the Top Method Baba.my process is implemented in the
module Baba and is named my process. This means that the top method is defined
as:
def Baba.my process(...)
Do something....
end

The Top Method is the method performing the execution of the task on a file. This is
the minimum requirement.

For complex tasks, you can however specify additional methods. The name of these
optional methods must respect a naming convention, by simply adding a suffix to the
name of the Top method:

e Params method: this method will manage parameters for the task. Suffix is
__params (ex: Baba.my process params).

e Start method: this method will be called before processing the files. This is
useful to prepare the environment before job execution. Suffix is __start (ex:
Baba.my process  start).

¢ Finish method: this method is called after processing the files. This is useful to
clean up the environment after job execution. Suffix is __ finish (ex:
Baba.my process  finish).

Fredo6 — FredoBatch Page 21 /36 v1.2 — 06 Dec 2024



5.2. Task Method Arguments
The Top Method may have 0, 1 or 2 arguments:
— task_method () : no argument

— task_method (file): the single argument is the full path of the file to be
processed

— task_method(file, task context): the second argument is a TaskContext
object, which gives you access to all information related to the context of
execution.

Whether you use arguments or not, you can always retrieve the Current File being
processed and the Task Context by using the two methods anywhere in your code:
® task context = F6_FredoBatch. task context

F6_FredoBatch.current file Or
task_context.current file

® current file
current_file

Note also that when the Task is processing a Sketchup file (.skp) and that the task
requires opening the Sketchup file, you can also retrieve the file path by calling:
Sketchup.active_model.path.
The Params Method has 1 argument:
— task_method__params (hsh params): the argument is Hash array with the
parameter keys and values (see section 5.5 below and the Appendix)
The Start Method may have 0 or 1 argument:
— task_method _start():no argument
— task_method _start(task context): the argument is the TaskContext
object.
The Finish Method may have 0 or 1 argument:
— task_method finish(): no argument
— task_method__finish(task context): the argument is the TaskContext
object.
5.3. Error Handling

FredoBatch calls all these methods within a begin..rescue block, so that potential
errors are catched and will be displayed in the Result Summary dialog.

If an error occurs during the Params or Start methods, the job is aborted.

If an error occurs during the Top method, the file processing is stopped and
FredoBatch goes to the next file.

If an error occurs during the Finish method, the error is reported in the Result
Summary dialog.

The display of the error gives access to the error message and error backtrace.

Fredo6 — FredoBatch Page 22 /36 v1.2 — 06 Dec 2024



5.4. Task Context

The Task Context is a Ruby object configured by FredoBatch to give access to
relevant information in the context of the method call, but also to interact with
FredoBatch processing.

The Task Context (ctx) exposes the following methods:

Information Methods

ctx.current file: path of the file under processing

ctx.name: name of the current task

ctx.require opening skp?: does the task require to open Sketchup files?
ctx.require backup?: does the task require backup?

ctx.extensions: list of file extensions supported by the task if any

ctx.get params: get the parameters of the task (Hash array, as defined in the
Params method of the task, with value populated by the user).

ctx.list of files: list of all files participating to the job

Log Methods

ctx.log(message, type): log a message, which will appear in the Result
Summary dialog or the Execution dialog or both, depending on the value of
type: :dialog or :result. Useful to indicate the details of the task process.

ctx.logR (message): equivalent 10 ctx.log (message, :result).

ctx.logl (message): equivalent to ctx.log (message, :dialog).

Attribute Methods

These two methods can be used by the task to store and retrieve any information,
which may be useful if the task is spread over different chunks of code. value can
be any Ruby object.

ctx.set attribute (attr, value): setthe value of an attribute

ctx.get attribute (attr): get the value of an attribute

Async Call

ctx.callme (delay, &continuation_proc): This method allows to give
back control to the Ul during a specified delay before continuing the task
processing. It can be used if the task processing is long (see Exemple 2 for
illustration).

ctx.wait_until (delay, nb_trials, &wait_proc): This method allows to
give back control to the Ul and continue the task processing when a condition
is met (based on wait proc). The check is performed periodically based on the
specified delay. By precaution, the job is aborted after nb trials attempts
(see Exemple 4 for illustration).

ctx.wait _interactive (message, hconfig, &validation_proc): This
method only works when Sketchup models are processed. It stops the
processing and gives back control to the user to make adjustments and continue
the processing (see Exemple 4 for illustration).

Fredo6 — FredoBatch Page 23 /36 v1.2 — 06 Dec 2024



5.5. Specifying Parameters for the Task
It is common that a Task requires parameters that must be asked to the user.

One approach is that the task manages parameters on_its own, by including the
code to display a parameter dialog box and collect the answer. The display of the
dialog would ideally be placed in the Start method. If some parameters are specific
to the file being processed, a parameter dialog would also be displayed in the Top
processing method.

FredoBatch provides a fast and easy way to prompt the user for parameters.
This is the purpose of the Params method. This approach has the additional benefit
to allowing the creation of Param tasks, by letting the user create tasks where the
parameters are pre-populated.

The name of the Params method is defined after the name of the top method, with a
suffix  params. It has one argument, which is a Hash array of parameter symbol and
value, usually as the default set of parameters.

The purpose of the Params method is to build instructions for FredoBatch to display
the parameters in a dialog, and within the Task editor dialog when creating a Param
task.

Below is an example of a Param method for the Built-in task Purge Unused, where
there are 4 parameters as checkbox for materials, components, tags and styles:

$#PURGE UNUSED: Params method
def self.do params(hparams=nil)
@hparams_default = { :material => true, :component => true, :tag => true,
:style => true, :environment => true}

#Default Parameters
hparams = {} unless hparams
hparams = @hparams default.update (hparams)

#Instructions for the Params dialog
title = "Purge U

msg = 'Select the K of the Purge-Unused

hsh dialog = { :width => 450, :message => msg, :unique_key => 'FéDoc_purge unused' }
instructions = []

instructions.push [:checkbox single, :material, 'Materials', hparams[:materialll
instructions.push [:checkbox single, :component, 'Components', hparams|[:component]]
instructions.push [:checkbox single, :tag, 'T ', hparams[:tag]l]

v

s', hparams[:style]l

instructions.push [:checkbox single, :style,
[title, instructions, hsh dialeg]

Fredo6 — FredoBatch Page 24 /36 v1.2 — 06 Dec 2024



The Params method returns:
e title: a title for the dialog box

e instructions: a list of specifications for each parameter as an array of:

o atype of parameters (here a single checkbox)

o a symbol for the parameter, which will be the key in the Params Hash
array

o alabel, as a string

o an initial value

o an optional array of additional specifications (not used in the
example above)

e hsh dialog: an optional Hash array containing some configuration
properties for the dialog (here, there is a message, a dialog width and a
unique key).

The corresponding dialog box is:
@ Purge Unused o O X

Purge Unused

Select the scope of the Purge-Unused

Materials:
Components:
Tags:
Styles:
o Y <t Cancel | Assign Parameters

FredoBatch provides several types of parameters, checkbox, multi-checkboxes, radio
button, text fields, numeric fields (integer, float, length) with an optional slider,
combo, directory selection, file selection, .... See the Appendix for details.

Fredo6 — FredoBatch Page 25/36 v1.2 — 06 Dec 2024



6. Examples of Custom Tasks

Here are a few complete examples of Custom Tasks, from simple to more complex. This is
illustrative and for the purpose of describing the principles of FredoBatch.

6.1. Example 1: Convert DWG/DXF files to Sketchup models

This method would take a list of DWG and DXF files and create Sketchup models
from them. Each skp file is created in the same directory as the DWG/DXF file and
with the same name. So,

e there are no parameters required for the task,

e There is nothing to pre-process and post-process.

e The task does NOT require opening SKP files

e The task does NOT require backup (since the DWG files are not touched)

Therefore, a simple Top method is sufficient.
§) Edit Custom Task - [w] X

Edit Custom Task

Enfer the parameters for the Custom task

Task Identification |

Category: General Purpose v

Name: | Gonvert DWG/DXF to SKP |

Description: ‘ Convert a set of DWG/DXF files to Sketchup models (same directory, same basename) ‘

Script Properties ‘

.. Baba.rb 4B
Bubvikiles C:/Google Drive/Ruby/Ruby/Models/FredoBatch L .

Top Method:

MyModule.convert_dxf dwg_to skp ‘

Filter on SU versions and Files by allowed extensions ‘

Allowed extensions

File Extensions: ‘dwg dxf separated by space
(ex: skp xmi)
SU Versions: SU2017 or above “ Required SU

Version or above

Task Processing

Sketchup Files: [] Open Sketchup .skp file before running the task

Backup: [ ] Backup files for possible restore

2k Close

Fredo6 — FredoBatch Page 26/ 36 v1.2 — 06 Dec 2024



Here is the code for the top method:

module MyModule

def MyModule.convert dxf dwg to_skp(file dzf dwg, task context)
#pPath to the SKP file
file skp = file dxf dwg.sub(/dwg\z/i, 'skp').sub(/dxf\z/i, 'skp')

#0pen a new file
Sketchup.file new

#Import the DWG
model = Sketchup.active model

model.import(file dxf dwg, false)

#save the file
model.save (file skp)

#Log the information
task context.log("Converted DWG/DXF to SEKP: <b><!blue>#{File.basename(file_skp)}<!></b>")

#Cclose the file({on mac)
model.close if RUBY PLATFORM =~ /darwin/i
end

end fmodule MyModule

The Results Summary dialog will show as:

$)) JOB Convert DWG to SKP: Processing Results = O X
V Files processed: 5 SUCCESS 3.141s
File Processed Duration
MyDWG - Copy (2).dwg 0.960s =
C/Google Drive/Ruby/Ruby/Models/FredoBatch
Convert DWG/DXF to SKP 0.960 s
Converted DWG/DXF to SKP- MyDWG - Copy (2).skp
MyDWG - Copy (3).dwg 0699 s
C/Google Drive/Ruby/Ruby/Models/FredoBatch
Convert DWG/DXF to SKP 0699 s

Convearted DWG/DXF to SKP: MyDWG - Copy (3).skp

M;:DWG - Cop;_r.[ﬂ.dwg — 0519s
C:/Google Drive/Ruby/Ruby/Models/FredoBatch

Done

Fredo6 — FredoBatch Page 27 /36 v1.2 — 06 Dec 2024



6.2. Example 2: Standard Scenes

This task illustrates the use of the params methods and the processing of Sketchup
models with modification and potential rollback.

The task takes a list of SKP model files and creates scenes with standard cameras.

We only need a Params method and a Process method. The Task will require to open
the skp model files and a Backup so that we can roll back the job.

§) Edit Custom Task — O P

Edit Custom Task

Enter the parameters for the Custom fask

Task Identification |

Category: General Purpose ~

Name: |Standard Scenes |

Description: |Create Standard Scenes in Sketchup models |

Script Properties |

.. Baba.rb 4B
Ruby File: C:/Google Drive/Ruby/Ruby/Models/FredoBatch li_l

Top Method: | Baba standard_scenes |

Filter on SU versions and Files by allowed extensions |

Allowed extensions

File Extensions: |5kp | separated by space
(ex: skp xmi)
SU Versions: | SU2017 or above - Required SU

Version or above

Task Processing

Sketchup Files: Open Sketchup .skp file before running the task

Backup: Backup files for possible restore

S Close

Params method

Parameters are:
e The list of Standard Cameras
e An optional Prefix for the Scene naming
e An optional Suffix for the Scene naming
e Option to perform a Zoom Extents

The dialog will be displayed as:
@ Standard Scenes — [l X

Standard Scenes

Enter parameters for the creation of standard scenes
| Standard Cameras |
Cameras: Iso Front Top Right Left Back Bottom

| Scene Naming |

Scene Name Prefix: |pr97 |

Scene Name 3uffix: |_posl |

Scene Properties |

Zoom Extents:

Position: @ At Beginning (O At End

S & Cancel = Assign Parameters

Fredo6 — FredoBatch Page 28 /36 v1.2 — 06 Dec 2024



The code for the Params method will be:

def Baba.standard scenes params (hparams)
#List of cameras - Variable is at module level, so available in all methods
@lst_standard cameras = [:Isc, :Front, :Top, :Right, :Left, :Back, :Bottom]

#Default Parameters
hparams_default = { :cameras => @lst standard cameras, :zoom extents => true, :position => :begin }

hparams
hparams

= {} unless hparams
= hparams_default.update (hparams)

#Instructions for the Params dialog

optionsicamera = @lstfstandardﬁcameras.collect { Isymb| [symb, symb.to_s]}
hspecs_cameras = { :1lst_options => options_camera}

cptions_pesiticon = [[:begin, 'At Beginning'l, [:end, 'At End']]

hspecs position = { :1st options => options position}

title = 'Standard

msg = 'Enter pa 1 g e creation of standard

hsh dialeog = { :width => €00, :message => msg }

instructions = []

instructions.push [:bandeau, andard Cameras']

instructions.push [:checkbox multi, :cameras, 'Cameras', hparams[:cameras], hspecs_cameras]
instructions.push [:bandeau, '

instructions.push [:text, :prefix, , hparams[:prefix]]

instructions.push [:text, :suffix, , hparams[:suffix]]

instructions.push [:bandeau, ' =

instructions.push [:checkbox single, :zoom extents, 'Zoom Extents', hparams[:zoom extents]]
instructions.push [:radio, :position, > ', hparams[:position], hspecs_position]

[title, instructions, hsh dialoegl]

end

Process method

The Process method just creates the scenes in each model. In the detail, we mark
scenes which are created by the task so that we replace them if they have already
been created by earlier job executions.

def Baba.standard scenes(skp file, task context)

end

At

mode
supa
dico

#Get
hpar

this stage, the Sketchup model is open
1 = Sketchup.active model

ges = model.pages

~kStandard

the params
ams = task context.get params

1st_cameras = hparams[:cameras]
zoom_extents = hparams[:zoom_extents]

pref
suff
posi

1st_standard cameras = (position == :end) ? @lst_standard cameras : @lst standard cameras

#Loo]

ix = hparams[:prefix]
ix = hparams[:suffix]
tion = hparams[:position]

P On cameras

lst_standard cameras.each do |cameral

end

#No

Fredo6 — FredoBatch

#Find a scene marked with the camera attribute - Delete it if it exists
supage prev = supages.to a.find { |supage| supage.get attribute(dico, camera.to_s)
supages.erase (supage_prev) if supage_prev

#Skip the scene if not requested
next unless lsticameras.include?(camera)

#Create the scene

name = "#{prefix}ff{cameral#f{suffix}"

ipos = (position == :end) ? supages.length :
Sketchup.send action("view#{camera}:")
model.active view.zoom extents if zoom extents
supage = supages.add name, PAGE USE ALL, ipos
supage.set_attribute(dico, camera.to_s, true)
action = (supage_prev)
msg = "#{action}
msg += " with <b>Zoom
task context.log msg

need to save the model. FRedoBatch will do it if the model has been modified

Page 29 /36 v1.2 — 06 Dec 2024

}

.reverse



The Result Summary dialog will show the details of the job execution:

§) JOB Standard Scenes Rubik: Processing Results = | x
V Files processed: 19 SUCCESS 14.286 s
File Processed Duration
Animator rubik_cube Enea - 2 - SU15.skp 0820s =~
C:/Goagle Drive/Ruby/Ruby/Models/Animator Beta
Animator rubik_cube Enea - 2 - SU16.skp 0791 s
C:/Goagle Drive/Ruby/Ruby/Models/Animator Beta
Backup File 0009 s
Opening File 0.212s
Standard Scenes 0.328 s
Replaced Scene pre_Bottom_post with Zoom Extents
Replaced Scene pre_Back_post with Zoom Extents
Replaced Scene pre_Left_post with Zoom Extents
Replaced Scene pre_Right_post with Zoom Extents
Replaced Scene pre_Top_post with Zoom Extents
Replaced Scene pre_Front_post with Zoom Extents
Replaced Scene pre_lso_post with Zoom Extents
Saving File 0.242s
Animator rubik_cube Enea - 2 - SU17.skp 07495
C:/Google Drive/Ruby/Ruby/Models/Animator Beta
—  Animator rubik cube Fnea -3 - SU15 skn 0804 s
Rollback Job Done

Since the input skp files have been modified, the Rollback Job option is available.

Fredo6 — FredoBatch Page 30 /36 v1.2 — 06 Dec 2024



6.3. Example 3: Model Gallery (simple version)

This task illustrates the use of the start, finish and params methods. It also shows the
bases of error handling and the asynchronous processing.

The task takes a list of SKP model files and creates a single PDF, where each page
displays a view of the models with a given camera.

The generation of the PDF is done via Layout, based on a Layout template.

The Template Layout file is based on a page, with a rectangle for the viewport, and a
title box to display the path of each model. All visual elements are on Layer On
Every Page.

Generated on $$current_date$$ /1

Fredo6 — FredoBatch Page 31/36 v1.2 — 06 Dec 2024



Params method

Parameters are:
e The path to the Layout template file
e The camera for the view (iso, top, left, ....)
e The path to the PDF file

The code would thus be:

def MyModule.model gallery params (hparams)
$Default Parameters

hparams default = { :camera => :iso, :uSe_date_Suffix => true }
hparams = {} unless hparams
hparams = hparams_ default.update (hparams)

fInstructions for the Params dialog

1st _cameras = ['iso', 'top', 'right', 'left',6 'bottom']

klist camera = lst cameras.collect { |symb| [symb, symb.to s, "tip #{symb}"]}
hspecs_suffix = { :comment => 'ex: Wed 23 Nov 24 10h30'}

title = 'Model Gallery'

msg = 'Enter parameters'

hsh dialeg = { :width => €00, :wid comment => 200, :message => msg }

instructions [1

instructions.push [:file open, :layout template, ‘'Layout Template',
hparams[:layout template]]

instructions.push [:combo, :camera, 'Camera', hparams[:cameral], klist camera]

instructions.push [:separator]

instructions.push [:file save, :pdf path, 'PDF File',6 hparams[:pdf path]]

instructions.push [:checkbox single, :use date suffix, 'Use Date Suffix’,
hparams[:use date suffix], hspecs suffix]

[title, instructions, hsh dialog]
end

The Parameter dialog will display as:

$) Model Gallery - m| X
Model Gallery
Enter parameters
. Batch Model Gallery.layout =
RaVCepiae C/Google Drive/Ruby/Ruby/Models/FredoBaich B
Camera: right ~
. NOfile defined

PDF File: ik to select file =l
Use Date Suffix: ex” Wed 23 Nov 24 10h30

5 & Cancel = Assign Parameters

Fredo6 — FredoBatch Page 32 /36 v1.2 — 06 Dec 2024



Start method

At the start of the task:
e we check that the PDF path has been provided
e we create a Layout document, based on the provided template.
o we identify the viewport rectangle where to display the model views (e.g.
the largest rectangle within the template page).

Although we could find alternatives to manage this information (layout document
and viewport bounds), the code below shows how to use the Task Context to store
and retrieve this information (task_context.set_attribute).

The code would thus be:

def MyModule.model gallery start(task_context)
#Retrieve the parameters and the Layout Template path
hparams = task_ context.get params
layout template path = hparams[:layout template]

#Check the PDF file
pdf path = hparams[:pdf pathl
if !'pdf path || pdf_path.empty?
return [:abort, 'PDF file path has not been provided']
end

fCreate a Layout document based on this template
document = Layout::Document.new(layout template path)
task_context.set_attribute(:document, document)

fon the first page of this template, find the biggest rectangle

#This will be the bounds for creating viewports (i.e. Sketchup Models)

template page = document.pages[(]

lst _rects = template page.entities.find all { |e| e.instance of?(Layout::Rectangle) }

fWe abort the job if there is no rectangle in the template.
if 1st_rects.empty?

return [:abort, 'No viewport defined in the Layout Template']
end

fIdentify the biggest rectangle to get the bounds for the viewport
vp_bounds = nil

area min =
lst rects.each do |rectl]
bounds = rect.bounds

area = bounds.width * bounds.height
if area > area min
vp_bounds = bounds
area min = area
end
end
task context.set attribute(:vp bounds, vp_bounds)

#Set the date for the document
ftext_current date = template page.entities.find do |e]|
e.instance_of?(Layout::FormattedText) && e.plain text =~ /\$\Scurrent date\s\5/

end
if ftext current date

sdate = Time.now.strftime "%a %d.%b.%y %H:%M:%S"

ftext current date.rtf = ftext_current_date.rtf.Sub(/\$\$Curr%nt_dat%\ﬁ\ﬁ/, sdate)
end

#0pen a New file in Sketchup to have a clean environment
Sketchup.file new

#Success

true
end
During the Start sequence, if anything goes wrong, you can abort the job
processing by returning :abort or [:abort, message]. The message will be
displayed to the user.

Fredo6 — FredoBatch Page 33 /36 v1.2 — 06 Dec 2024



Process method

The Process method is here split into 2 methods, to illustrate the use of the
task_context.call_me asynchronous call, which gives back control to the UL

Since we do not want to alter the original Sketchup files, we copy them to a
temporary directory and open them in Sketchup. We then set the specified camera
and create the corresponding page in the Layout document (viewport and title).

def MyModule.model gallery(skp file, task context)
fCopy the Sketchup file to a temporary place
skp_tmp_path = File.join(Sketchup.temp dir, File.basename(skp_file).Sub(/\.akp/i, "_temp.skp"))
FileUtils.copy skp_file, skp_tmp_path

#0pen the temp sketchup file
Sketchup.open file skp tmp path, with status: true

#Set the view to the required camera and perform a zoom extent
model = Sketchup.active model

camera = task_context.get_params[:cameral

Sketchup.send action("view#{camera}:")

model.active view.zoom extents

task_context.log (" the view dbh“!bluﬁb#{camera}“!::’

>m)

#3ave the temporary Sketchup file
model . save

fAsync call
task context.callme { MyMDdule.model_gallery_phasez(Skp_file, skp_tmp_path, task_context) }
end

def MyModule.model gallery phase2(skp file, skp tmp_path, task context)
#Retrieve the document and the viewport bounds
document = task_context.get_attribute(:document)
vp_bounds = task_context.get_attribute (:vp_bounds)
pages = document.pages

#Add a page for the Sketchup model
basename = File.basename (skp file, '.skp')
page = pages.add basename

#Create the viewport (Sketchup Model)

layer_default = document .layers.find { |layer| layer.name == 'Default' }
layport = Layout::SketchUpModel .new (skp_ tmp path, vp bounds)
layport.current scene =

document.add entity(layport, layer default, page)

#set the title text to the skp file path (painful as no copy in the Layout API)
rect_title = page.entities.find do le|
e.instance_of?(Layout::Rectangle) && e.style.fill color.to_a == [0, 2 i A55]
end
if rect title
bb = rect_title.bounds
%1, yl = bb.upper left.to a
x2, y2 = bb.lower right.to_a
center = Geom: :Point2d.new({0.5 * (x1 + x2), 0.5 * (y1 + y2))
ftext = Layout::FormattedText.new(skp_file, center, Layout::FormattedText::ANCHOR_TYPE_CENTER_CENTER)
document.add entity(ftext, layer_default, page)
style = ftext.style
style.font_family =
style.text_color =
style.text bold = true
style.font_size = 12
ftext.style = style
end

#0pen a new Sketchup file and Delete the temporary Sketchup file

model.close if RUBY_PLATFORM =~ /darwin/i

Sketchup.file new

File.delete skp_tmp_path

task_context.log(“- d
end

<b><!blue>#{basename}<!></b>")

Fredo6 — FredoBatch Page 34 /36 v1.2 — 06 Dec 2024



Finish method

After all models are processed, we remove the first page (template page) and export
the Layout document to a PDF file, which is open to the user.

def MyModule.model gallery finish(task context)
fRetrieve the document and the PDF path
document = task_context.get_attribute(:document)

#Remove the first page
document .pages .remove ()

#Generate the FPDF
hparams = task context.get params
pdf file path = hparams[:pdf path]
if hparams[:use_date_suffix]
sdate = Time.now.strftime "%d.%b.%y—%H.%M.%3S"
pdf file path = pdf file path.sub(/\.pdf\z/i, " #{sdate}.pdf")
end
document.export(pdf_file_path, {})

#0open the PDF
UI.openURL pdf file path

end

Below, one page of the generated PDF:

C:/Google Drive/Ruby/Ruby/Models/Ghost/Forklift Ghost.skp

Generated on Sun 17.Nov.24 12:43:43 2/2

Fredo6 — FredoBatch Page 35/36 v1.2 — 06 Dec 2024



6.4. Example 4: Model Gallery (advanced version)

This task is a variant of the previous task with more advanced features. It illustrates
the use of the asynchronous interactive processing (wait_interactive). Model
gallery is available as a Built-in task in FredoBatch vi.2. See this video for
illustration.

Interactive processing is a means to give control to the user when processing files.

In the case of the Model Gallery example, the task will open each Sketchup model
and let the user choose the camera in the model. When done, the user will press a
button Validate to continue the job (or skip the file, or abort the job):

@ Interactive Adjustments = O X

Model Gallery

Please select a view

Zoom Extents:

oo T e skip Abort Validate

Parameters can also be used in the Interactive Dialog, here Zoom Extents, to trigger
(or not) a zoom adjustment of the user-defined camera in order to fit the model within
the layout viewport.

To enter the interactive mode, the execution proc should invoke:
task_context.wait interactive(msg, hconfig, &validation proc).

The block validation proc will be invoked when the user clicks on the Button
Validate. The convention is that this proc should return:

e Either a continuation proc to be called for continuing the job,

e Or any other value to stay in the interactive mode, for instance, if the user did
not perform what is expected by the task.

Some parameters can be passed to the interactive mode with the hash array hconfig.
For instance, you can pass the instructions to prompt the user for some parameters. In
the example of Model Gallery,

instructions = []
instructions.push [:checkbox single, :zoom extents, 'Zoom Extents', zoom extents]
hconfig[:instructions] = instructions

task context.wait interactive (msg, hconfig) do
self.do validate view(skp file, skp tmp path, task context)
end

In the example above, the validation proc do validate view does not do anything
complex, since the interactive mode is triggered to the user for possibly changing the
camera (via pan, orbit, change the current scene, etc...). So, there is no negative
condition preventing the continuation of the job. So, it is rather simple and just return
the continuation proc.

#MODEL GALLERY: Validate the view
Jdef self.do_validate view(skp file, skp tmp path, task context)

proc { self.do phase2(skp file, skp_tmp path, task context, :custom) }
-end

Note that using proc allows to transmit context variables through arguments.

Fredo6 — FredoBatch Page 36/ 36 v1.2 — 06 Dec 2024



