
Fredo6 – FredoBatch Page 1 / 36 v1.2 – 06 Dec 2024

FREDOBATCH
EXECUTING TASKS ON A SET OF FILES

VERSION 1.2 – DECEMBER 2024

BY FREDO6

FredoBatch is an Extension for SketchUp 2017 and above.

The home page of FredoBatch is on the Sketchucation web site at:

https://community.sketchucation.com/post/1611210

Fredo6 – FredoBatch Page 2 / 36 v1.2 – 06 Dec 2024

Contents
1. Introduction and Main Principles ... 3

2. File Manager .. 6
2.1. File Manager dialog .. 6
2.2. File Lists ... 7
2.3. File Sets ... 8

3. Task Manager .. 10
3.1. Custom Tasks .. 11
3.2. Param Tasks .. 12

4. Job Manager .. 14
4.1. Create and Edit a Job .. 14
4.2. Launching a Job .. 16
4.3. Job Execution .. 16
4.4. Reviewing the Job Execution Summary .. 17
4.5. Rollback Job .. 20

5. Designing a Custom Task .. 21
5.1. Task Method Names ... 21
5.2. Task Method Arguments .. 22
5.3. Error Handling .. 22
5.4. Task Context ... 23
5.5. Specifying Parameters for the Task .. 24

6. Examples of Custom Tasks.. 26
6.1. Example 1: Convert DWG/DXF files to Sketchup models .. 26
6.2. Example 2: Standard Scenes ... 28
6.3. Example 3: Model Gallery (simple version) .. 31
6.4. Example 4: Model Gallery (advanced version) ... 36

Fredo6 – FredoBatch Page 3 / 36 v1.2 – 06 Dec 2024

FREDOBATCH

Executing Tasks on a Set of Files

1. Introduction and Main Principles

FredoBatch executes a set of tasks on a set of files:

 a Task is based on Ruby code, with a top method as an entry point. Task can be
built-in (provided with FredoBatch) or custom (configured by the user).

 a Set of Files is specified as a combination of lists of files (File List) or open set of
files with wild card and filtering on names and extensions (File Set).

 a Job is the combination of sets of files and tasks. This is what is executed by
FredoBatch.

A job is created and then launched via the Job Manager.

For instance, the job below (Purge and Convert)
 applies to a set of Sketchup models (.skp files) contained in a File List (Cloud

Files) and a File Set (Shared Models)…
 …two tasks: Purge unused and Convert to old SU versions.

Fredo6 – FredoBatch Page 4 / 36 v1.2 – 06 Dec 2024

When you launch the job, you are prompted to specify parameters for each task:

Then a Progress dialog is displayed:

Fredo6 – FredoBatch Page 5 / 36 v1.2 – 06 Dec 2024

Finally, the process is summarized in the Results dialog, with the details of execution:

The Results dialog shows errors in the execution if some happened. It also allows to
rollback the job if needed.

Tasks, Set of Files, Jobs are managed by FredoBatch via dedicated dialogs. This
information is stored on the computer independently of models and versions of Sketchup.

Fredo6 – FredoBatch Page 6 / 36 v1.2 – 06 Dec 2024

2. File Manager

Files can be specified in 2 ways:

1) File List: this is a static specification of files where you designate each file
individually. Files can be in distinct directories.

2) File Set: this is a dynamic specification of files by combining a directory and a
set of filters on the file names and extensions. This specification is evaluated at
execution of the job, so it may contain files which were not present at the time you
defined the File Set.

2.1. File Manager dialog

The File Manager dialog shows the File Lists and File Sets defined in your
environment:

Each File List and File Set is given a name and short description, which will be
displayed when you select them for a Job.

To create a File List or a File Set, click on the respective buttons at the bottom of
the dialog.

To edit a File List or a File Set, double-click click on the Edit icon on the
corresponding row.

Fredo6 – FredoBatch Page 7 / 36 v1.2 – 06 Dec 2024

2.2. File Lists

The dialog to create or modify a File List is as follows:

To add files, click on the Button ‘Add File’. You are prompted to select the path to
the file(s), by browsing to a directory and selecting one or several files in this
directory.

Fredo6 – FredoBatch Page 8 / 36 v1.2 – 06 Dec 2024

2.3. File Sets

The dialog to create or modify a File Set is as follows:

The specifications are based on:

 One or several contributing directories, which you select by browsing your
computer.

 A list of allowed file extensions typed in the field (separated by space, comma
or semi-column). For instance, the extension filter below allows both .skp and
.dxf files, excluding all other extensions.

Note that you can use wildcards in the filter (ex: xls* will catch most Excel
files).

 Filters on file names, either to include (IN) or to exclude (OUT). For instance,
the name filters below keep all files whose name begins with B or C and does
not contain 3.

Fredo6 – FredoBatch Page 9 / 36 v1.2 – 06 Dec 2024

Note that you can combine filter specifications with and-conjunctions (using
‘&’) as well as regular expressions (enclosed in /), if you are familiar with it.
For instance, the filters below keep all files whose name begins with C and
ends with 2 digits and also contain the digit 5.

The file shown are those that are present on your computer and respect the filtering at
the time of creation or modification of the File Set. When you launch a job including
the File Set, the files are dynamically recalculated.

Fredo6 – FredoBatch Page 10 / 36 v1.2 – 06 Dec 2024

3. Task Manager

A task corresponds to the action to be executed based on a file as input. For instance,
Purge Unused over Sketchup models.

The task may not necessarily act directly on the file itself, but instead use the file to
perform other actions. For instance, a task ‘Convert to skp’ executed on DXF files, would
take DXF files and convert them to Sketchup models. Likewise, the files could be
instructions, say specifications of geometry in a CSV or TXT files, to perform
construction of shapes in Sketchup.

In FredoBatch, there are 3 categories of tasks:

1) Built-in Tasks: they are provided by FredoBatch.

2) Custom Tasks: they are provided by the user, based on a top method in Ruby.

3) Param Tasks: these are instances of Built-in tasks or Custom Tasks where
parameters are pre-selected, so that there is no prompt for parameters at execution
of a job. For instance, from the Built-in Task Purge Unused, you can derive a
Param task which will only purge materials and styles (but not components).

The Custom Task Manager dialog allows to create and manage Custom Tasks and
Param Tasks:

Fredo6 – FredoBatch Page 11 / 36 v1.2 – 06 Dec 2024

3.1. Custom Tasks

Custom Tasks are specified by a top method in a Ruby script.

So, creating custom tasks requires that you are familiar with Ruby, or are instructed
by someone who is familiar with Ruby. Section 5 below gives more detail on how to
script a custom task for simple and complex cases.

The creation and edition of Custom Tasks is done via the Custom Task Editor
dialog:

The Custom Task is given a Category1, a Name and a Description.

Script Properties specifies the top method entry (here Baba.top) and optionally a
Ruby script file (here C:/Google Drive/Ruby/Ruby/Models/FredoBatch/Baba.rb)
which implements this top method. Note that the Ruby script file is necessary only if
the code for the task is not already present in your environment. For instance, some
plugins may expose top methods which are compatible with FredoBatch, in which
case you do not need a script file.

1 Categories are for a future categorization of tasks, not effective in the current version of FredoBatch.

Fredo6 – FredoBatch Page 12 / 36 v1.2 – 06 Dec 2024

File extensions and Sketchup Versions can also be specified. Here, the task acts
only on Sketchup models, created in SU2020 or above. This means that any other
files will be skipped at execution of the task and Sketchup files with version <
SU2020 will also be skipped. If you leave these fields empty, there is no restriction.

The section Task Processing is more related to the Job execution.

 For Sketchup files, you indicate whether FredoBatch opens .skp files or not
before processing the task.

 Backup should be checked whenever the files are going to be modified by the
task. This enables an automatic backup of files before processing and therefore
a possible rollback afterwards.

3.2. Param Tasks

Param Tasks are derived from existing Built-in Tasks or Custom Tasks, with a static
specification of parameters.

To create a Param Task, click on the button New Param Task… in the Task
Manager dialog. You then need to select a task, Built-in or Custom:

Fredo6 – FredoBatch Page 13 / 36 v1.2 – 06 Dec 2024

After selecting the base task (here the Built-in Task Purge Unused on Models), you
get a dialog which includes the parameters of this base task populated by their default
values:

As for any task, you must give it a name and description.

Then, you give values to the parameters listed in the dialogs (here, 4 flags as
checkboxes). These parameters will be registered and associated with the Param task.

The Param task is now visible in the Task Manager and can be used in a Job.

You can later change these values by editing the Param task.

Fredo6 – FredoBatch Page 14 / 36 v1.2 – 06 Dec 2024

4. Job Manager

A Job is specified as the association of files and tasks.

Jobs are created, launched and edited via the Job Manager dialog.

If the Launch icon, located in the first column, is displayed, you can directly launch the
job by clicking on the icon.

Otherwise, the Warning icon indicates that there is a problem with the job, either related
to the tasks (missing or invalid) or files (no files).

4.1. Create and Edit a Job

To create a Job, click on the button New Job… To modify a Job, double-click on
the job row or click on its Edit icon. In both cases, the Job Editor dialog will be
displayed:

Fredo6 – FredoBatch Page 15 / 36 v1.2 – 06 Dec 2024

In addition to the name and description of the Job, you need to provide:

 Files: in the left list box, add File Lists and File Sets.

You can possibly review and even modify these definitions. The list at the
bottom of the dialog will show the files that will participate in the Job
execution.

 Tasks: in the right list box, add tasks: Built-in, Custom and Param tasks.

You can possibly review and even modify the tasks.

IMPORTANT: the order of tasks does matter for the job execution. To
remove a task and place it at the end of the list, add it again.

Fredo6 – FredoBatch Page 16 / 36 v1.2 – 06 Dec 2024

4.2. Launching a Job

You can launch a Job from the Job Manager dialog or the Job Editor dialog.

If the job was just modified during the selection process, you are offered to save it
either under the same name or a new name:

4.3. Job Execution

Before the actual execution of the job, you are prompted to enter the parameters of
the tasks if they have some:

Then, the job is executed on the specified files. A Progress dialog is displayed:

In case errors are encountered, they are indicated in the Progress dialog.

Fredo6 – FredoBatch Page 17 / 36 v1.2 – 06 Dec 2024

You can pause or stop the execution by clicking on the Stop button. A confirmation
message is displayed:

You have 3 options:

 Resume Job: just resume the job execution

 Hard Stop: FredoBatch will simply stop and exit from the job execution.

 Rollback Job: this option will restore the files to their original state. If the
tasks support it, they will also restore the initial environment. This is the
recommended option.

4.4. Reviewing the Job Execution Summary

At the end of the job execution, the Execution Summary dialog is displayed:

It indicates the number of files processed and the global status: Success or Error.

If there are some errors, corresponding file rows are displayed in red:

Fredo6 – FredoBatch Page 18 / 36 v1.2 – 06 Dec 2024

For each file row, you can get a detail of the execution by clicking on the row to
expand it (double click to expand / shrink all rows).

For files which are in error, file rows are displayed in Red.

Fredo6 – FredoBatch Page 19 / 36 v1.2 – 06 Dec 2024

You can get details on the error, by clicking on the button See Error. Depending on
the error (Ruby or others), you get the technical information about the source of the
error.

Fredo6 – FredoBatch Page 20 / 36 v1.2 – 06 Dec 2024

4.5. Rollback Job

After the execution of a job, you have the option to roll back the job, even if it is
successful.

You will first get a confirmation message:

Then the rollback will be executed, with a Progress dialog:

At the end of the rollback, you get a Summary dialog detailing how the Rollback
was processed (success or error):

Fredo6 – FredoBatch Page 21 / 36 v1.2 – 06 Dec 2024

5. Designing a Custom Task

This section is more technical and requires that you are familiar with Ruby and the
Sketchup API.

A Custom Task requires the specification of:

1) A Top Method, written in Ruby.

2) Optionally, a Ruby script file, which includes this top method, unless this top
method is already present in your Sketchup environment (in general, coming from
an extension). FredoBatch will ensure that the specified script file is loaded in the
environment before processing the task.

5.1. Task Method Names

The Top Method name must be specified with its complete path from the top level
of Ruby.

In the example above, the Top Method Baba.my_process is implemented in the
module Baba and is named my_process. This means that the top method is defined
as:

The Top Method is the method performing the execution of the task on a file. This is
the minimum requirement.

For complex tasks, you can however specify additional methods. The name of these
optional methods must respect a naming convention, by simply adding a suffix to the
name of the Top method:

 Params method: this method will manage parameters for the task. Suffix is
__params (ex: Baba.my_process__params).

 Start method: this method will be called before processing the files. This is
useful to prepare the environment before job execution. Suffix is __start (ex:
Baba.my_process__start).

 Finish method: this method is called after processing the files. This is useful to
clean up the environment after job execution. Suffix is __finish (ex:
Baba.my_process__finish).

Fredo6 – FredoBatch Page 22 / 36 v1.2 – 06 Dec 2024

5.2. Task Method Arguments

The Top Method may have 0, 1 or 2 arguments:

 task_method(): no argument

 task_method(file): the single argument is the full path of the file to be
processed

 task_method(file, task_context): the second argument is a TaskContext
object, which gives you access to all information related to the context of
execution.

Whether you use arguments or not, you can always retrieve the Current File being
processed and the Task Context by using the two methods anywhere in your code:

 task_context = F6_FredoBatch.task_context
 current_file = F6_FredoBatch.current_file or

current_file = task_context.current_file

Note also that when the Task is processing a Sketchup file (.skp) and that the task
requires opening the Sketchup file, you can also retrieve the file path by calling:
Sketchup.active_model.path.

The Params Method has 1 argument:

 task_method__params(hsh_params): the argument is Hash array with the
parameter keys and values (see section 5.5 below and the Appendix)

The Start Method may have 0 or 1 argument:

 task_method__start(): no argument

 task_method__start(task_context): the argument is the TaskContext
object.

The Finish Method may have 0 or 1 argument:

 task_method__finish(): no argument

 task_method__finish(task_context): the argument is the TaskContext
object.

5.3. Error Handling

FredoBatch calls all these methods within a begin…rescue block, so that potential
errors are catched and will be displayed in the Result Summary dialog.

If an error occurs during the Params or Start methods, the job is aborted.

If an error occurs during the Top method, the file processing is stopped and
FredoBatch goes to the next file.

If an error occurs during the Finish method, the error is reported in the Result
Summary dialog.

The display of the error gives access to the error message and error backtrace.

Fredo6 – FredoBatch Page 23 / 36 v1.2 – 06 Dec 2024

5.4. Task Context

The Task Context is a Ruby object configured by FredoBatch to give access to
relevant information in the context of the method call, but also to interact with
FredoBatch processing.

The Task Context (ctx) exposes the following methods:

Information Methods

 ctx.current_file: path of the file under processing

 ctx.name: name of the current task

 ctx.require_opening_skp?: does the task require to open Sketchup files?

 ctx.require_backup?: does the task require backup?

 ctx.extensions: list of file extensions supported by the task if any

 ctx.get_params: get the parameters of the task (Hash array, as defined in the
Params method of the task, with value populated by the user).

 ctx.list_of_files: list of all files participating to the job

Log Methods

 ctx.log(message, type): log a message, which will appear in the Result
Summary dialog or the Execution dialog or both, depending on the value of
type: :dialog or :result. Useful to indicate the details of the task process.

 ctx.logR(message): equivalent to ctx.log(message, :result).

 ctx.logW(message): equivalent to ctx.log(message, :dialog).

Attribute Methods

These two methods can be used by the task to store and retrieve any information,
which may be useful if the task is spread over different chunks of code. value can
be any Ruby object.

 ctx.set_attribute(attr, value): set the value of an attribute

 ctx.get_attribute(attr): get the value of an attribute

Async Call

 ctx.callme(delay, &continuation_proc): This method allows to give
back control to the UI during a specified delay before continuing the task
processing. It can be used if the task processing is long (see Exemple 2 for
illustration).

 ctx.wait_until(delay, nb_trials, &wait_proc): This method allows to
give back control to the UI and continue the task processing when a condition
is met (based on wait_proc). The check is performed periodically based on the
specified delay. By precaution, the job is aborted after nb_trials attempts
(see Exemple 4 for illustration).

 ctx.wait_interactive(message, hconfig, &validation_proc): This
method only works when Sketchup models are processed. It stops the
processing and gives back control to the user to make adjustments and continue
the processing (see Exemple 4 for illustration).

Fredo6 – FredoBatch Page 24 / 36 v1.2 – 06 Dec 2024

5.5. Specifying Parameters for the Task

It is common that a Task requires parameters that must be asked to the user.

One approach is that the task manages parameters on its own, by including the
code to display a parameter dialog box and collect the answer. The display of the
dialog would ideally be placed in the Start method. If some parameters are specific
to the file being processed, a parameter dialog would also be displayed in the Top
processing method.

FredoBatch provides a fast and easy way to prompt the user for parameters.
This is the purpose of the Params method. This approach has the additional benefit
to allowing the creation of Param tasks, by letting the user create tasks where the
parameters are pre-populated.

The name of the Params method is defined after the name of the top method, with a
suffix __params. It has one argument, which is a Hash array of parameter symbol and
value, usually as the default set of parameters.

The purpose of the Params method is to build instructions for FredoBatch to display
the parameters in a dialog, and within the Task editor dialog when creating a Param
task.

Below is an example of a Param method for the Built-in task Purge Unused, where
there are 4 parameters as checkbox for materials, components, tags and styles:

Fredo6 – FredoBatch Page 25 / 36 v1.2 – 06 Dec 2024

The Params method returns:

 title: a title for the dialog box

 instructions: a list of specifications for each parameter as an array of:
o a type of parameters (here a single checkbox)
o a symbol for the parameter, which will be the key in the Params Hash

array
o a label, as a string
o an initial value
o an optional array of additional specifications (not used in the

example above)

 hsh_dialog: an optional Hash array containing some configuration
properties for the dialog (here, there is a message, a dialog width and a
unique key).

The corresponding dialog box is:

FredoBatch provides several types of parameters, checkbox, multi-checkboxes, radio
button, text fields, numeric fields (integer, float, length) with an optional slider,
combo, directory selection, file selection, …. See the Appendix for details.

Fredo6 – FredoBatch Page 26 / 36 v1.2 – 06 Dec 2024

6. Examples of Custom Tasks

Here are a few complete examples of Custom Tasks, from simple to more complex. This is
illustrative and for the purpose of describing the principles of FredoBatch.

6.1. Example 1: Convert DWG/DXF files to Sketchup models

This method would take a list of DWG and DXF files and create Sketchup models
from them. Each skp file is created in the same directory as the DWG/DXF file and
with the same name. So,

 there are no parameters required for the task,

 There is nothing to pre-process and post-process.

 The task does NOT require opening SKP files

 The task does NOT require backup (since the DWG files are not touched)

Therefore, a simple Top method is sufficient.

Fredo6 – FredoBatch Page 27 / 36 v1.2 – 06 Dec 2024

Here is the code for the top method:

The Results Summary dialog will show as:

Fredo6 – FredoBatch Page 28 / 36 v1.2 – 06 Dec 2024

6.2. Example 2: Standard Scenes

This task illustrates the use of the params methods and the processing of Sketchup
models with modification and potential rollback.

The task takes a list of SKP model files and creates scenes with standard cameras.

We only need a Params method and a Process method. The Task will require to open
the skp model files and a Backup so that we can roll back the job.

Params method

Parameters are:
 The list of Standard Cameras
 An optional Prefix for the Scene naming
 An optional Suffix for the Scene naming
 Option to perform a Zoom Extents

The dialog will be displayed as:

Fredo6 – FredoBatch Page 29 / 36 v1.2 – 06 Dec 2024

The code for the Params method will be:

Process method

The Process method just creates the scenes in each model. In the detail, we mark
scenes which are created by the task so that we replace them if they have already
been created by earlier job executions.

Fredo6 – FredoBatch Page 30 / 36 v1.2 – 06 Dec 2024

The Result Summary dialog will show the details of the job execution:

Since the input skp files have been modified, the Rollback Job option is available.

Fredo6 – FredoBatch Page 31 / 36 v1.2 – 06 Dec 2024

6.3. Example 3: Model Gallery (simple version)

This task illustrates the use of the start, finish and params methods. It also shows the
bases of error handling and the asynchronous processing.

The task takes a list of SKP model files and creates a single PDF, where each page
displays a view of the models with a given camera.

The generation of the PDF is done via Layout, based on a Layout template.

The Template Layout file is based on a page, with a rectangle for the viewport, and a
title box to display the path of each model. All visual elements are on Layer On
Every Page.

Fredo6 – FredoBatch Page 32 / 36 v1.2 – 06 Dec 2024

Params method

Parameters are:
 The path to the Layout template file
 The camera for the view (iso, top, left, ….)
 The path to the PDF file

The code would thus be:

The Parameter dialog will display as:

Fredo6 – FredoBatch Page 33 / 36 v1.2 – 06 Dec 2024

Start method

At the start of the task:
 we check that the PDF path has been provided
 we create a Layout document, based on the provided template.
 we identify the viewport rectangle where to display the model views (e.g.

the largest rectangle within the template page).

Although we could find alternatives to manage this information (layout document
and viewport bounds), the code below shows how to use the Task Context to store
and retrieve this information (task_context.set_attribute).

The code would thus be:

During the Start sequence, if anything goes wrong, you can abort the job
processing by returning :abort or [:abort, message]. The message will be
displayed to the user.

Fredo6 – FredoBatch Page 34 / 36 v1.2 – 06 Dec 2024

Process method

The Process method is here split into 2 methods, to illustrate the use of the
task_context.call_me asynchronous call, which gives back control to the UI.

Since we do not want to alter the original Sketchup files, we copy them to a
temporary directory and open them in Sketchup. We then set the specified camera
and create the corresponding page in the Layout document (viewport and title).

Fredo6 – FredoBatch Page 35 / 36 v1.2 – 06 Dec 2024

Finish method

After all models are processed, we remove the first page (template page) and export
the Layout document to a PDF file, which is open to the user.

Below, one page of the generated PDF:

Fredo6 – FredoBatch Page 36 / 36 v1.2 – 06 Dec 2024

6.4. Example 4: Model Gallery (advanced version)

This task is a variant of the previous task with more advanced features. It illustrates
the use of the asynchronous interactive processing (wait_interactive). Model
gallery is available as a Built-in task in FredoBatch v1.2. See this video for
illustration.

Interactive processing is a means to give control to the user when processing files.

In the case of the Model Gallery example, the task will open each Sketchup model
and let the user choose the camera in the model. When done, the user will press a
button Validate to continue the job (or skip the file, or abort the job):

Parameters can also be used in the Interactive Dialog, here Zoom Extents, to trigger
(or not) a zoom adjustment of the user-defined camera in order to fit the model within
the layout viewport.

To enter the interactive mode, the execution proc should invoke:

task_context.wait_interactive(msg, hconfig, &validation_proc).

The block validation_proc will be invoked when the user clicks on the Button
Validate. The convention is that this proc should return:

 Either a continuation_proc to be called for continuing the job,

 Or any other value to stay in the interactive mode, for instance, if the user did
not perform what is expected by the task.

Some parameters can be passed to the interactive mode with the hash array hconfig.
For instance, you can pass the instructions to prompt the user for some parameters. In
the example of Model Gallery,

In the example above, the validation proc do_validate_view does not do anything
complex, since the interactive mode is triggered to the user for possibly changing the
camera (via pan, orbit, change the current scene, etc…). So, there is no negative
condition preventing the continuation of the job. So, it is rather simple and just return
the continuation proc.

Note that using proc allows to transmit context variables through arguments.

